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Abstract

Software systems fail. Although software developers mostly try their very best to avoid errors

in software systems, failures are unavoidable. Sometimes the failures are catastrophic, resulting

in financial loss or even danger to human safety. Often the faulty behavior leads to the system

being in an invalid state, which may cause follow-up errors later on. Yet, invalid states of a

system can be detected using class invariants. Class invariants express the valid states of a

software system and must not be violated. Through exhaustive testing, these invariants can

then be tested to ensure that they hold. Invariant checking may thus avoid failure.

Unfortunately, existing approaches for invariant checking require extensive manual inter-

vention in where/how to place the invariants in the code. Invariants only need to be validated

in situations where its validity is affected. This requires careful placement of invariants checks

in the code – a placement that needs to be reconsidered every time the code changes or the

invariant changes. The only alternative is to validate the invariants continuously at every step

of the software’s execution. However, doing so is unscalable.

This thesis presents a novel, tool-supported approach for invariant checking that automati-

cally decides when to validate invariants in a manner that is significantly more scalable compared

to placing invariants everywhere and in a manner that is guaranteed correct.

Apart from defining the invariant, no additional user interaction is required. The approach

avoids the invariant placement problem by observing the software system’s execution and trig-

gering an invariant check only if the software system’s state changed in a relevant manner. By

observing the execution and recognizing state changes of a software system during runtime, we

are able to drastically reduce the number of performed invariant checks. The proposed approach

has been implemented for the Java programming language but is, in principle, applicable to

other languages also.

We evaluated its correctness, performance and scalability on several open source case studies.

iii





Kurzfassung

Softwaresysteme schlagen fehl. Obwohl Softwareentwickler ihr möglichstes versuchen Fehler in

Softwaresystemen zu vermeiden sind Fehler unvermeidbar. In gewissen Fällen sind die Aus-

wirkungen der Fehler katastrophal, resultieren in hohen finanziellen Verlust und können sogar

Menschenleben gefährden. Oft führt das fehlerhafte Verhalten zu einem ungültigem Systemzu-

stand, welcher zu weiteren Folgefehlern führen kann. Fehlerhafte Systemzustände können durch

das Verwenden von Klasseninvarianten entdeckt werden. Klasseninvarianten beschreiben die

Menge der gültigen Zustände eines Softwaresystems und dürfen nicht verletzt werden. Durch

intensives Testen kann sichergestellt werden, dass diese Invarianten nicht verletzt werden. Da-

durch kann das Überprüfen von Invarianten Fehler vermeiden.

Existierende Ansätze zum überprüfen von Invarianten erfordern hohen manuellen Aufwand,

im speziellen wo diese Überprüfungen im Quellcode direkt platziert werden. Invarianten müssen

lediglich überprüft werden falls ihre Gültigkeit betroffen sein könnte. Dies erfordert sorgfältige

Platzierung der Überprüfungen der Invarianten im Quellcode. Diese Platzierungen müssen jedes

mal berücksichtigt werden sobald sich der Quellcode oder die Definition der Invarianten ändert.

Die einzige Alternative ist das durchgängige Überprüfen aller Invarianten nach jedem Schritt

der Ausführung des Systems. Allerdings ist dies nicht skalierbar.

Diese Masterarbeit präsentiert einen neuartigen Ansatz zum überprüfen von Invarianten

welcher automatisch entscheidet zu welcher Zeit Überprüfungen stattfinden müssen. Dieser

Ansatz skaliert erheblich besser als überall Überprüfungen durchzuführen und ist garantiert

korrekt.

Außer dem definieren von der Invarianten ist keine weitere Benutzerinteraktion notwendig.

Der Ansatz vermeidet dass genannte Platzierungsproblem durch überwachen der Ausführung

eines Softwaresystems und löst das Überprüfen von Invarianten nur aus wenn sich der Zustand

in einer relevanten Weise geändert hat. Durch das überwachen und feststellen von Änderungen

des Systemzustandes zur Laufzeit sind wir in der Lage die Anzahl der Überprüfungen drastisch

zu reduzieren. Der Ansatz wurde vollständig für die Programmiersprache Java implementiert,

könnte aber prinzipiell an anderen Sprachen angewendet werden.

Zum Auswerten des Ansatzes bezüglich Korrektheit, Performance und Skalierbarkeit wurden

diverse Open Source Fallstudien verwendet.
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Chapter 1

Introduction

1.1 Motivation

Software system failures can be disastrous, especially if life is at risk or the failure causes

physical damage of any kind. To minimize the critical failures, we have to ensure that a

software system behaves according to its specification. The concept of design by contract is no

new idea at all [24], but past events and the increasing complexity of software systems show

that this concept becomes more and more indispensable nowadays [18]. Although the core

emphasis is to ensure correct functional behavior, one may also use those concepts to describe

the valid states of a system. A system transitioning into an invalid state, either by internal or

external events, may cause incorrect behavior further on. This means that correct behavior and

valid states correlate directly in most cases. The valid states of a software system modeled or

implemented using an object orientated language can be defined using class invariants. Usually

those invariants are expressed as constraints written in a language as least as powerful as first

order logic. Certain modeling languages like the UML [30] even provide native support to

document such constraints.

One way of reducing the risk of software failure is to check the behavior of a program

statically by means of formal proving. While formal proving works great for verifying the

correct implementation of algorithms, with the increasing complexity of state-of-the-art software

systems it does not. In case of loosely coupled components, that may even be exchanged at

runtime (and therefore change the behavior), statical analysis is mostly not applicable since the

exact behavior is unknown prior to execution. It is simply not feasible to take all possibilities

into account, especially if new / exchanged components are by a third party. Complex software

systems may even be self-adaptive, making dynamic verification a requirement [2]. Furthermore

formal proving always requires user interaction. There are tools aiding a user in the proving

process, but it is impossible to automate it altogether (see Chapter 6).

When statical analysis reaches its limits, developers check those invariants dynamically

1



1. INTRODUCTION

during runtime. However, testing class invariants in an implementation is a rather hard task

and rarely done, even less in a productive environment. This is caused by the complexity of

state-of-the-art software systems, where a developer has to decide on proper places for invariant

checks. They are either added manually or automatically to almost every method of a class.

Furthermore, a system is not just delivered to a customer or sold off the shelf. It is continuously

maintained and evolves over time, making it even harder harder to keep the locations of invariant

checks up-to-date (see Section 1.3).

Hence, there is clearly a need for an approach that performs runtime checks and automates

as much as possible. Meaning that developers do not have to decide the appropriate time for

an invariant check to occur. Additionally, the approach should perform as many checks as

necessary and as few as possible. This paper contributes a new novel fully automated tool-

supported incremental scalable approach, aiming at reducing both required user interactions,

as well as, required computation time, as much as possible. We evaluated this on various openly

available software systems, ensuring that approach is both correct and scales up to larger scale

systems.

1.2 Scope

This thesis does not deal with all aspects associated with design by contract. We are not exactly

interested in correct operational behavior, the focus is on correct or valid system states from a

global perspective. Hence, we do not support checking operations’ pre- or postconditions, since

it suffices to check them locally (i. e. at the beginning or end of the corresponding operation

respectively). Furthermore, we only care about publicly visible states of classes and therefore do

not support loop invariants. Only class invariants for object orientated systems are considered

at the moment.

Generally our approach would be applicable to any object oriented language, but we chose

Java as a reference language for the implementation due to its high popularity. Although we

specifically implemented our approach to fully support the Java language it may also be used

for other languages that compile to Java byte code and are executed in a Java Virtual Machine,

e. g. Scala. Another deciding factor for using Java was the fact that it provides sophisticated

tool support for observing a target application, which is already commonly used by debugging,

profiling, and monitoring tools, etc. Switching to another language could be done easily by

providing similar means to access the required information.

Further we restricted the constraint language used for defining invariants to the Object

Constraint Language (OCL). For a detailed description of OCL and the reasoning behind this

choice, see Section 2.1. Although our language of choice is OCL, the actual constraint checker

used to validate the invariants is generic and does not strictly depend on OCL. If someone would

provide a parser for a different language that would map its concepts to our own, exchanging

the constraint language would be quite easy.
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1.3 Problem Illustration

Node

element : E

setNext ( next : Node )

setPrev ( prev : Node )

E : DataType

CorrectlyLinked

{next <> null implies next.prev = self}

List

size ( ) : Integer

E : DataType

EmptyList

{size() = 0 implies

(head = null and tail = null)}

OneElement

{size() = 1 implies head = tail}

MoreElements

{size() >= 2 implies

 head <> tail}

SizeRange

{size() >= 0}

NotEmpty

{size() > 0 implies (head <>

null and tail <> null)}

ElementReferenced

{element <> null}

0..1

- next

0..1

- prev

1

0..1- head

1

0..1- tail

Figure 1.1: Double linked list structure

1.3 Problem Illustration

We illustrate the problem of dealing with invariants using a simple example, namely a double

linked list. Figure 1.1 shows the class structure of a double linked list and its invariants.

Listing 1.1 shows a possible implementation of the Node class. Invariant checks have been

inserted manually using assertions. The common notion of invariants regarding design by

contract is, that an invariant has to hold whenever an instance of its class is in a publicly visible

state [25]. Thus, the naive approach is that the invariant becomes part of any postcondition.

This means that after any method execution, both its postcondition and all class invariants

must hold. Basically, we need to revalidate the invariants after the creation of an object and

whenever the state of the object changes, i. e. methods causing side effects. We can detect

several problems treating invariants as part of method postconditions and manually inserting

checks.

Problem 1.3.1 (Invariant checking locations). The first problem we can observe, is that the

developer has to decide on the proper locations for the invariant checks. Although they are

3
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class Node <E> {

Node <E> next = null;

private Node <E> prev = null;

private E element;

Node(E element) {

this.element = element;

assert checkElementReferenced();

}

void setNext(Node <E> next) {

this.next = next;

assert checkInvariant();

}

Node <E> getNext() {return next;}

void setPrev(Node <E> prev) {

this.prev = prev;

assert checkInvariant();

}

Node <E> getPrev() { return prev; }

E getElement() { return element; }

private boolean checkCorrectlyLinked() {

return next == null || next.prev == this;

}

private boolean checkElementReferenced() {

return element != null;

}

private boolean checkInvariant() {

return checkElementReferenced() && checkCorrectlyLinked();

}

}

Listing 1.1: Node implementation

quite obvious in an easy example like this, in a more complex class it may not be that easy

to determine the locations of invariant checks. This is the reason why existing approaches

tend to be exhaustive (checking all invariants of a class in every method, as discussed later in

Chapter 6).

Problem 1.3.2 (Language “barrier”). Usually the language used to describe invariants at de-

sign time is different from the one used in the implementation. For example, the class diagram

shown in Figure 1.1, uses the Object Constraint Language (OCL [28]) to define the invariants,

which is commonly used for models written in Unified Modeling Language (UML [30]) or other

Meta Object Facility (MOF [29]) based languages. On the other hand the implementation

shown in Listing 1.1 uses plain Java to check the invariants CorrectlyLinked and ElementRe-

ferenced. Translating between different languages manually is error prone, especially if the

languages follow different paradigms (declarative vs. imperative). Most existing approaches
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1.3 Problem Illustration

first : Node

second : Node

third : Node

list : List

- next

- next
- prev

- prev

- head

- tail

(a) Initial linked list

first : Node

second : Node

third : Node

list : List

- next

- next

- prev

- prev

- head

- tail

(b) Broken linked list after change

Figure 1.2: Instantiation of a double linked list

use proprietary languages that closely resemble the language the target application is written

in.

Problem 1.3.3 (Software evolution). A software system is not set in stone, it will be main-

tained and evolves over time. During the system’s life-cycle, existing methods or invariants may

be modified or new ones added. The developer introducing these changes has the responsibility

to ensure that the class stays consistent, i. e. invariant checks are still performed whenever

necessary. We see that inserting invariant checks manually is not a proper solution. It’s simply

too time consuming and error prone. In our linked list example we manually optimized the

invariant check at the end of the Node constructor. Since we know that at this point there is

simply no way that the invariant CorrectlyLinked could be violated, we simply omit it. But, if

for whatever reason, someone changes the constructor such, that it could violate the invariant

and does not change the invariant check appropriately, we end up with an invalid class definition

possibly causing problems later on. Although there are existing automated approaches which

deal with some of the problems described above (as described in Chapter 6), not all problems

are solved or the solutions do not provide sufficient flexibility.

Problem 1.3.4 (Flaws of local checks). The most serious problem is, that by just checking

invariants locally for the affected classes may not reveal all violations. Figure 1.2 shows two

possible states of a double linked list. The initial list shown in Figure 1.2a is perfectly fine and

does not violate any invariant. After calling third.setPrev(first), the list transitions into

the state shown in Figure 1.2b, which is obviously not a proper double linked list any more.

Using our manually inserted assertions, we are unable to detect this error, since the invariant will

only be checked for the node third, which still holds. Due to the nature of the implementation,

the violation of the invariant CorrectlyLinked goes unnoticed for node second. A similar issue

is the existence of non-private fields. Generally speaking, the values of those fields can be set

from outside the object they belong to (this is programming language dependent, but possible

in most state-of-the-art languages). In such cases local invariant checks again fail to detect the
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violation, since no method of this object is called. Thus, a fair amount of invariants would

also need checking from locations, that are not belonging to the object itself. Of course, this

contradicts modern design / development principles, generally speaking it is bad practice to use

non-private fields, but if they are used, other developers using such a class without knowing its

implementation details can be quite risky.

Existing automated approaches tend to be exhaustive, in a sense that they insert checks

at the end of each publicly visible method. This leads to unnecessary checks being performed.

Methods which do not modify the state of an object, should not cause invariant checks (e. g. a

method such as size() in our illustration, shown in Listing 1.2). Some methods, on the other

hand, do change the state of an object, but cause too many invariant checks nonetheless. In

our example the method setNext(. . .) does not modify the field element and there is no need

to check the invariant ElementReferenced, since at this time there is no way that it is violated,

if it were not already the case. Optimizing the invariant checks at this point on the other hand

directly leads to Problem 1.3.3. The worst part is that some approaches insert checks even if

the object in question is not in a publicly visible state, which may lead to detecting many false

negatives (i. e. detecting an invariant violation when there actually is none, e. g. because it is

only temporary during the execution of a helper or recursive method). Certainly, a software

system is designed for a specific purpose, it should spend most of its computation time fulfilling

that purpose. Performing unnecessary invariant checks is simply a waste of computation time.

int size() {

int size = 0;

Node <E> current;

for(current = head; current != null; current = current.getNext

()) size++;

return size;

}

Listing 1.2: size() method implementation

Problem 1.3.5 (Hard coded invariants). A minor problem is that the invariants are hard-coded

inside the classes. There is no way to add, remove or modify the invariants during the execution

of the system. Although invariants should be defined at design time and the probability that

their definition will change is pretty low, performing the invariant checks consumes CPU time.

It would be helpful to disable certain invariants or add new ones during runtime, if a developer

notices something suspicious going on in the system or needs it to execute faster. Existing

approaches, especially those weaving the checks into the source or byte code of the application,

do not allow such on the fly modifications and require recompilation and restarting the system.
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1.4 Vision and Goals

By writing invariant checks manually, a developer may theoretically be able optimize their

execution time, as well as, the necessary calls. But, as we already mentioned, this is both error

prone and not feasible. Our vision from a user perspective is to minimize the required effort

as much as possible, while still yielding correct results and at the same reduce the execution

time an application spends on performing the checks by a huge degree. A developer shall only

be responsible for defining the required invariants, which is already a hard enough task. The

fairly error prone process of ensuring that invariant checks are performed whenever necessary,

should be fully automated.

While invariant checks are especially useful during testing, we also wanted our approach

to be useful to monitor productive systems. This means that our approach should on one

hand provide instant feedback whether it detected violations and scale up to systems where

preforming invariant checks is required more frequently. As we will discuss in Chapter 6,

existing approaches tend to check invariants in an exhaustive manner. This behavior may, and

most certainly will, slow down the system to a noticeable extent. We want to avoid this problem

by minimizing the invariant checks performed, while making sure that they are performed often

enough such that all violations are discovered. Generally speaking, it is impossible that the

outcome of an invariant changes as long as no intermediate results change. To further encourage

this, we wanted to make the approach as flexible as possible. A user should be able to add,

remove, or modify class invariants at any time during the runtime of the system. Since checking

complex class invariants might consume quite some CPU time, and a system should not waste

time performing unnecessary invariant checks, if one can be sure that a certain invariant will not

ever be violated, there should be a way to avoid further checks of this invariant. On the other

hand, if one recognizes that the system does not work according to its specification, adding

or enabling new invariants is a useful way to determine the cause of the observed errors. We

want to accomplish this by decoupling the invariant checks from the system in question. First

of all, the actual invariant definition are separated from the systems source code. Secondly,

the invariant checking entity is a separate component that can be attached or detached from

the system at any time. Keeping the invariant definition in a separate repository enables us

to modify them during the runtime of a system without the need of re-compiling them. By

detaching the invariant checking component, the system works as if there were no invariants

defined at all, preserving the original behavior.

The approach should be incremental, meaning that it will never check all defined in batch-

like fashion (checking unnecessary ones). But, the result still have to be the same, i. e. if at

some point in time one would check all invariants it has to come up with the same results

as our incremental one. Another goal is to make the approach as generic as possible. It

should theoretically be able to work with different target runtime environments or programming

languages. Summoning it up the following goals were set:
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1. Usability aspects:

(a) Minimizing required user effort: Invariants only have to be defined by users them-

selves and the approach takes care of when they will be checked by itself.

(b) Flexibility: Users have to be able to change the set of defined invariants and their

definitions on the fly without the need to alter source or recompilation.

2. Incremental: The approach has to work incrementally while still providing correct results.

3. Generic: Provide an architectural allowing easy adaptation to other environments / lan-

guages.

4. Performance: It should be applicable for both testing and monitoring a productive envi-

ronment, i. e. not slowing down the target application such it becomes unusable.

5. Scalable: Incremental invariant checking should provide scalability up to bigger systems

or ones that require lots of invariant checks within a given time frame, especially compared

to existing approaches.

Ultimately, we want to come up with a monitoring tool capable of detecting a target system

being in an invalid state, but still allowing it to continue its operation by using emergency

reactions or fixing it on the fly (see Chapter 7). This is not part of the goals of this thesis any

more, just a greater vision with this work being the first step towards this direction.

1.5 Solution

To address the identified problems, first of all we separate the responsibility of performing

invariant checks from the system. We introduce a new invariant checking component that

runs in an entirely different process or even on a different physical machine, in fact it is an

different application which is not related to the target system whatsoever. This component

is responsible for storing the invariant, determine when they need to be checked and finally

report the results of checks. Therefore, we got rid of the invariants being defined in the source

code of the application and the target system can now concentrate on performing the tasks it

is intended to. It is capable of connecting to a target system at any time.

We reduce the number of performed invariants checks by observing the execution of the

invariant checks themselves as well as changes imposed on the state of the target system.

Invariants are checked incrementally, only if the results could have changed due to changes.

The gap between design and implementation is bridged by using OCL as the language for

the invariants. Reusing constraints written in OCL at design time requires almost no effort.
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1.6 Structure of this Thesis

This section explained the motivation behind this thesis, pointing out problems with existing

approaches and showed the goals. Further on, Chapter 2 will briefly describe the technologies

this work is based on, including the constraint language used in the implementation, as well

as the reasoning behind choosing the particular language. Chapters 3 and 4 will discuss the

approach we came up with to perform incremental invariant checking and how it has been

implemented respectively. Chapter 5 depicts the evaluation of the approach, clearing whether

the set goals have been reached. Chapter 6 discusses related work and points out the differences

between our approach and already existing work in this area. Finally, Chapter 7 concludes this

thesis, lining out what has actually been achieved and discusses some ideas how the existing

approach could be extended to reach the overall vision.
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Chapter 2

Background

This chapter briefly describes the technologies / libraries used in this work. Section 2.1 intro-

duces the language used to specify invariants, why this particular languages has been chosen

and what it is capable of. Section 2.2 discusses the mechanism used to communicate with the

target application for invariant checking.

2.1 Constraint Language

There were lots of possibilities for choosing a suitable constraint language, including designing

a new one. We decided not to create a constraint language ourselves, but instead using an

existing one to decrease the effort necessary to learn how to use the tool. To further support

this intention, the language had to be widely used and well recognized within the software

industry. Furthermore we preferred a declarative language, a class invariant should define what

structural properties need to hold in order to consider a state valid, not how it is checked.

There already exist constraint languages especially designed for the purpose of constraining at

the implementation level, e. g. the Java Modeling Language (JML). The downside is that most

of those languages are aimed at specific programming languages, as their name suggests.

For those reasons we chose the Object Constraint Language (OCL) [28], which was originally

designed to enrich meta models based on the Meta Object Facility (MOF) [29] with additional

constraints not expressible using pure MOF. Because of MOF’s strict modeling language ar-

chitecture, OCL can not only be used at the meta modeling level, but also on the modeling

level. Since OCL is a declarative language, certain specific features of some object orientated

programming languages, especially imperative ones, may not be directly expressible using OCL,

although it covers a common basis used by most languages. Especially basic concepts like prop-

erty (field) access and operation (method) calls are supported natively. The functional nature

of OCL implies that expressing iterative concepts like loops is not possible directly. Anyhow,

OCL offers standard collection functions powerful enough to express most loops in a functional
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fashion. Also note that OCL is entirely side effect free. An OCL expression may contain vari-

able definitions, but reassignments of those or properties of an accessed model element is not

possible.

Usually, OCL operates on a fixed (set of) predefined meta-model(s). In our case the meta-

models is composed of all the classes currently loaded in the target application including Java

primitive types. Note that OCL contains some UML specific constructs / extensions that are

entirely irrelevant for this work. The following subsections will give a brief introduction to OCL,

as well as show how OCL standard types and operations can be mapped to Java ones. Finally,

Section 2.1.3 will show some examples how constraints written in Java can be translated into

an OCL expression. Although there may be constraints not expressible in OCL due to the

different language paradigm, we were able translate every single constraint we found in the case

studies to OCL. This may have required certain workarounds, but was possible nonetheless.

2.1.1 OCL Types

Figure 2.1 shows the structure of simple standard OCL types. All those types are instances of the

MOF meta-type Classifier and all types defined in a target model are considered being instances

of the meta-type Class, which is itself a subtype of Classifier. Class is in some way the equivalent

of java.lang.Class in Java. There is no real equivalent of Classifier in Java, but we treat as also

equivalent to java.lang.Class, although instances of Classifier include primitive types. This can

be done since primitive Java types are not used in our implementation. Whenever a primitive

type is accessed in the target application it is immediately converted to its object oriented

counterpart.

The following list describes the OCL standard types (excluding collections, see Section 2.1.1.1).

Finally Table 2.2 show which standard Java types are mapped to which OCL ones or considered

being subtypes thereof.

OclAny is similar to the class Object in Java in that it is treated as a supertype of all other

types, including classes defined in the target model. The predefined operations on OclAny

are equality tests (=, <>) and and type expressions (see Section 2.1.2.4).

OclVoid is another special type, which has a sole instance called null and represents the

absence of a value. It is treated as a subtype of all types regarding type conformance,

meaning that whatever type a property, operation or argument has, null is a valid value.

Property or operation calls on null will result in invalid (except certain special operations

like equality comparison).

OclInvalid which is not shown in the figure since it is not supported by our tool is in a sense

similar to OclVoid. Like OclVoid it is also treated as a subtype of every other type and

has a single instance called invalid. If An expression return invalid, it can be considered

as a runtime error during the validation of the expression (e. g. a property call on null).

To some degree it can be compared to runtime exceptions in Java. Example 2.1.6 in
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OclAny

StringBooleanReal

Integer

UnlimitedNatural

OclVoid

«metaclass»

Classifier
«instance of»

Figure 2.1: Simple OCL Types

Section 2.1.2.6 shows how basic error handling can be performed if an expression returns

invalid.

Boolean represents standard truth values. There are exactly two instances of Boolean, true

and false representing their respective truth values. Standard operations defined on

Boolean are the usual boolean algebra ones, e. g. and, or, not, etc. Implementing those

operations in Java is straight forward since equivalent operations for truth values already

exist in Java.

String is just an ordinary character string like ’this is a String’ and is equivalent to the

java.lang.String class in Java. Operations defined on String include concatenation,

extracting substrings and converting them to other standard types if applicable.

Real represents the mathematical set of real values (R) like 3.14. There does not exist an actual

equivalent in Java since numbers are limited (have a maximum value) there, but all Java

types representing numbers are treated as being subsets of Real. Predefined operations

are standard arithmetic operations like additions, subtraction, etc. as well comparison

operators like ≤, >.

Integer represents the set of integer values (Z) like 42. In OCL Integer as a subtype of Real,

which is correct mathematically speaking since Z ⊆ R. This is not true for Java types

representing integer values since there exist integer values which can not be represented

using types like double or float. Our implementation acts like this would be the case

anyhow for simplification purposes. The operations defined on Integer are practically the
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Collection

elementType : DataType

Set OrderedSetBag Sequence

«metaclass»

Classifier

«metaclass»

CollectionType
«instance of»

Figure 2.2: OCL Collection Types

same as for Real but expect another integer as an argument and will also return an integer

if applicable.

UnlimitedNatural is irrelevant in this work. It has been adopted from UML and serves as

a means to represent multiplicity values of attributes and references. Mathematically, it

is the set of positive integers including a special value called unlimited denoting infinity

(N0 ∪ {∞}). It is a subtype of integer in that it shares its behavior and operations,

although an operation with an integer argument called using unlimited will usually

result in invalid.

2.1.1.1 Collections

Figure 2.2 shows the structure of available collection types in OCL. Although the are indeed

instances of the Classifier meta-type (CollectionType to be specific), they are special and are

not subtypes of OclAny. This means that an instance of a Collection does not conform to

OclAny, i. e. it is not permitted to pass a collection to an operation call excepting an argument

of type OclAny. In Java there is no special treatment regarding collections, they are treated as

ordinary classes and as such are indeed subtypes of the Object supertype. In OCL collections are

real containers for other objects and have no attributes themselves. Even calling operations on

collections has a different notation in OCL’s concrete syntax (-> instead of .). The elementType

of collections is the type of the objects the collection contains (or a supertype thereof). A

collection A(X) (X being the elementType of A) conforms to an another collection B(Y ) if and

only if A � B ∧ X � Y (read A � B as A is a subtype of B). This would not be type-safe

if the contents of a collection could be subject the changes , but as already mentioned OCL is

side-effect free making this a valid conformance rule. In Java, the rule would be A � B∧X = Y .

Collection is the abstract supertype for all other collection types. The element type is bound

to the type of the elements it contains, which may be a collection again. The Collection

type defines basic operations implemented by all specific subtypes. Those include, but
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is not limited to, querying the number of elements it contains, whether certain elements

are contained, etc. Furthermore it defines operations to convert between different kinds

of collections and the “loop” constructs (see Section 2.1.2.7).

Bag is the most basic type of collections, that does not have an equivalent in Java. There is

no ordering defined on the elements contained in a Bag and it allows duplicates, meaning

that an element may be contained an arbitrary number of times.

Set represents the typical mathematical set, i. e. it does not allow duplicates and there is no

specific order defined on the elements it contains. Additionally to the operations defined

on Collection, Set defines typical set operations like union, intersection, etc. It is similar

to collections in Java implementing the java.util.Set interface.

Sequence is the typical mathematical relation mapping an integer value (the index) to an

associated element (N → E, where E is the element type of the sequence). Additionally

to the operations defined on Collection, Sequence defines operations to access its contents

using an index or creating new sequences by adding / removing elements at specific

positions. It closely resembles collections implementing the java.util.List interface in Java.

OrderedSet can be interpreted as a hybrid of a Set and a Sequence. It does not allow dupli-

cates and contents are ordered using an index. The name suggests that it is equivalent

to Java collections implementing java.util.SortedSet, although it is not. A SortedSet in

Java uses a Comparator or the natural ordering of its contents to sort them, users can

not influence directly at which positions an element will be inserted and elements can not

be retrieved using an index. A similar structure in Java could be special implementation

of java.util.List discarding duplicates.

2.1.1.2 OCL to Java Type Mapping

Since OCL types are used in the definitions of the invariants and the target application uses Java

ones, it has to be defined when the types from the different domains are considered conforming

to each other. Values extracted from the target application may be used as arguments to

standard OCL operations and those returned by OCL operations may also be used as arguments

of methods called in the target application. Table 2.1 shows the OCL and Java types that

are considered equivalent, i. e. an instance of the Java type conforms to the OCL type and

vice versa. On the other hand there are types both in OCL and in Java for which no real

equivalent is available. For those types an OCL to Java (OCL types conforming to Java ones,

see Table 2.2) and a Java to OCL mapping has been defined (Java types conforming to OCL

ones, see Table 2.3). Application specific non-standard Java types (classes) are treated as-is,

i. e. standard Java conformance rules apply. If types are used as arguments that are not covered

by the conformance rules stated in the before mentioned tables users have to covert the values

to acceptable types themselves, using native conversion functions.
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OCL Type Java Type
Classifier java.lang.Class

OclAny java.lang.Object

String java.lang.String

Boolean java.lang.Boolean

Collection(T) java.util.Collection<T>

Set(T) java.util.Set<T>

Sequence(T) java.util.List<T>

Table 2.1: Equivalent OCL and Java Types

OCL Type Java Class
Real java.lang.Double

Integer java.lang.Integer

Bag(T) java.util.Collection<T>

Table 2.2: OCL to Java standard type mappings

Java Type OCL Type
java.lang.Character String

java.lang.Byte Integer
java.lang.Short Integer

java.lang.Integer Integer
java.lang.Long Integer
java.lang.Float Real
java.lang.Double Real

Table 2.3: Java to OCL standard type mappings
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OclExpression

LiteralExpCallExp IfExp VariableExp TypeExp

Variable

TypedElement

FeatureCallExp LoopExp

«metaclass»

Classifier

«metaclass»

Type

0..1
1

- source

*

0..1 - variable

0..1 *

- iterator

*

1 - referringType

* 1

- type

Figure 2.3: Abstract Syntax of OCL Expression

Note that we do not deal with Java primitive types (int, boolean, ...) at all, the implemen-

tation ensures that whenever a primitive is accessed in the target application it will be automat-

ically boxed into its object oriented equivalent (java.lang.Integer, java.lang.Boolean, ...).

This also applies in the other direction as well, meaning that whenever a method is called in

the target application using a primitive as an argument it will be converted to the appropriate

one.

2.1.2 OCL Expressions

Figure 2.3 shows partially the abstract syntax of OCL expressions, leaving out constructs that

are irrelevant or not supported by our tool. In contrast to imperative languages like Java, OCL

has no notion of statements. Whereas in Java a code block consists of a sequence of statements

and each of those of expressions, an OCL constraint (or query) consists of single expression,

however arbitrary complex. Every expression in OCL is typed, i. e. it must return some value

and this value must conform to the expressions type. In the following we will describe standard

OCL expressions and provide examples how to express them in the concrete syntax of OCL

2.1.2.1 Context of OCL Expressions

An important concept of OCL expressions is the context. As the name suggests OCL is primarily

used to impose certain constraints on model elements. To specify for which type of elements

a constraint has to hold its context has to be specified. Listing 2.1 shows the definition of

the CorrectlyLinked invariant introduced in Figure 1.1 in the proper OCL format. The inv

keyword states that the expression is actually an invariant (OCL also knows other expression

types that will not be discussed here since they are irrelevant in this work). In conjunction

with the context specified as Node, it means that this invariant has to hold for each instance of

type Node. The context is used by the special variable self, which refers to the current context
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Literal Type

3.14 Real
42 Integer

’foo’ String
true Boolean
null OclVoid

Set{42,’foo’} Set(OclAny)
Sequence{7..14} Sequence(Integer)

Tuple{name : String = ’Matt’, age : Integer = 42} Tuple(String, Integer)

Table 2.4: Literal examples

element, i. e. the current Node instance the expression is validated on.

context Node

inv: next <> null implies next.prev = self

Listing 2.1: OCL constraint with context

2.1.2.2 Literals

A LiteralExp in OCL is simply a constant / literal wrapped in an expression. The type of the

expression is the type of literal itself and validating it always returns the literal itself. Literals

may be of any of the basic types (including collections) or tuples. Literal expressions usually

do not contain subexpressions (and thus are leaves of the abstract syntax tree), except for

collection and tuple literals. Collection and tuple literals may contain subexpressions, which

express their initial contents. Table 2.4 shows some examples of valid literal expressions.

2.1.2.3 Variables

OCL does not support actual variables, in a sense that the value they represent can not be

modified, Only one-time assignments are possible. This means that variables in OCL are more

or less just named constants comparable to final variables in Java. Variables basically occur in

two types of expression: operations on collections expressing loops (see Section 2.1.2.7) and so

called LetExpressions. Figure 2.4 shows the abstract structure of LetExpressions (abbreviated

as LetExp in the figure). Variable defines the the variables name, its type (which must be

stated explicitly). The value of the variable is the result of the initExpression, which may be an

arbitrary expression, although its type must conform to the type of the variable. The second

part of a LetExpression is the inExpression which is again an arbitrary expression that may

refer to the previously defined variable by using a VariableExpression. A VariableExpression is

simply the name of the variable in the concrete syntax of OCL and always returns the value

the variable refers to. The result returned by the entire LetExpression is the same the one of
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OclExpression

LetExp Variable
1- variable

1- inExpression

1- initExpression

Figure 2.4: Abstract Syntax of LetExpressions

the inExpression (and thus its type). Because of its nature a LetExpression is only useful when

the same (sub)expression would occur multiple times, as shown in Example 2.1.1.

A special variable is the one with the name self. It always returns the current context, e. g.

the element an invariant is currently checked on.

Example 2.1.1 (LetExpression). In the expression a.b.c.d = a.b.c.e, the subexpression

a.b.c occurs multiple times, which on one hand causes the exact same expression to be validated

multiple times as well makes the expression harder to read if the expression gets bigger. It is

thus useful to replace it with the expression shown in Listing 2.2.

let c : OclAny = a.b.c in

c.d = c.e

Listing 2.2: LetExpression example

2.1.2.4 Type Expressions

TypeExpressions are operations defined on OclAny and serve as constructs to perform type

checking and type casting operations.

oclType returns the dynamic type of the object the operations is applied to. An expression

like x.oclType() = y.oclType() can be used to check whether the dynamic types of the

objects by x and y are equal.

oclIsTypeOf returns whether the dynamic type of the object the operations is applied to is

exactly the same as the one of the provided Classifier. The type of oclIsTypeOf is

Boolean. The expression x.oclIsTypeOf(Node) returns true if the type of the object

denoted by x is Node and false otherwise.

oclIsKindOf returns whether the dynamic type of the object the operations is applied to is the

same or a subtype as the one of the provided Classifier. It works similar to ocIsTypeOf,

e. g. x.oclIsKindOf(Node) returns true if the type of the object denoted by x is Node or

a subtype of Node.
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oclAsType serves as operation performing type casts in OCL and behaves similar to Java type

casts. It only changes the static type information used for parsing purposes of the object it

is applied and returns the object itself (no modification is performed). User should ensure

that the cast actually valid before performing this operation (using either oclIsTypeOf

or oclIsKindOf). If the object does not conform to the supplied Classifier, this operation

fails when validated and returns invalid. This operation is especially useful in this work

when iterating over collections in the target application. Generic type parameters in

Java are lost after compilation, meaning that the element type of collections cannot be

retrieved during runtime. This means that when iterating over a collection the elements

have to be cast to the actual element type in order to access their properties.

2.1.2.5 Model Access

In OCL expressions that access values in the target are called FeatureCalls. Generally, there are

two types of FeatureCalls: PropertyCalls and OperationCalls, whereas a PropertyCall is used to

access some property of a model element (e. g. a field of an object) and OperationCalls denotes

calling an operation or method. The model element on which operation or property call is

performed is returned by the source expression. In case of an operation call it must necessarily

be an element existing in the model, it may also be an instance of an OCL standard type. The

referred property or operation must exist in the static type of the source expression, i. e. the

definition of the expression is refused by the parser if the property or operation does not exist in

the type of the model element returned by the source expression. OperationCalls also contain

a sequence of arguments, i. e. the arguments supplied when calling the operation. The types

of the arguments must conform to the formal arguments defined by the called operation. Note

that operation calls that may cause side effects (alter the models state) are not allowed, e. g. a

call like first.setNext(third) is invalid and should be reverted by the parser. Unfortunately,

we have no way (yet) to find out whether a method in a Java class is side effect free. Therefore,

we abort the operation call and return a runtime error if during the execution a modification

attempt occurs.

The concrete syntax of a property is similar to a field access in Java, i. e.

source.propertyName. An operation call is similar to a method call in Java, i. e.

source.OperationName(args), whereas args is structured as arg, arg, ...

Example 2.1.2 (PropertyCall). The expression next.prev returns the value of property prev

contained in the model element returned by the source expression next, which is also a property

call in this case but could also be some variable. The hierarchy of property calls can be arbitrary

deep, as in next.next.next.next. Note that next.prev does not state the source of the

next property call. In such a case an OCL automatically prepends the current context of

the expression, which is either self or the currently accessed element when iterating over a

collection (see Section 2.1.2.7).
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FeatureCallExp

OclExpression

OperationCallExp PropertyCallExp

PropertyOperation

CallExp

0..11 - source

*

1- property

*

1- operation

1

*- arguments {ordered}

Figure 2.5: FeatureCallExpressions

Example 2.1.3 (OperationCall). The expression size() in the invariant shown if Figure 1.1

will call the size() method of the currently validated List object (self) and yield the result

returned by the method call.

2.1.2.6 Conditional Expression

There exists only one conditional construct in OCL, namely the IfExpression shown in Fig-

ure 2.6. It contains of a condition which is an expression returning a boolean value, and two

expression validated based an whether the condition is satisfied or not. Note that since an If-

Expression is itself a subtype of OclExpression it also has a type (it returns a value), depending

on the types of the contained thenExpression and elseExpression. The types of thenExpression

and elseExpression need not necessarily be the same, but they must have at least a common

supertype. This common supertype is used as the type of the IfExpression. The main difference

between OCL and Java is that the else branch must always be present. This is caused by the

fact that the IfExpression must return some value, which would be undefined if the condition

would not be met and no else branch would be present. In Java the then or else branches are not

expressions in a strict sense, they are simply a sequence of subsequently executed statements.

Example 2.1.4 (IfExpression). We could rewrite CorrectlyLinked constraint from our example

using an IfExpression instead of the implication as shown in Listing 2.3. In this case both the

then and the else branch have the same result type, i. e. Boolean. Thus, the entire IfExpression

also returns a boolean value.
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IfExp

OclExpression

1

1

- condition

1

1

- elseExpression

1

1 - thenExpression

Figure 2.6: IfExpressions

if self.next = null then

true

else

self.next.prev = self

endif

Listing 2.3: Rewritten CorrectlyLinked using if

Example 2.1.5 (If expression with different subtypes). As explained previously the types of the

then and else expression may be different as shown in Listing 2.4. This expression may not make

much sense or be useful and is for illustration purposes only. Clearly the thenExpression returns

a model element of type Node, whereas the type of elseExpression refers to the type bound to

the template parameter E. If E would yet be bound to a concrete type they could actually be

equal. But, during the definition of the expression the parameter E is still unbound, meaning

that the parser will infer their “nearest” supertype. In this case it happens to be OclAny, it is

at least ensured that any type that could possibly be bound to E is in fact a subtype of OclAny.

if self.next = null then

self.prev

else

element

endif

Listing 2.4: IfExpression with different subtypes

Example 2.1.6 (Using IfExpressions for error handling). An IfExpression can be used to

handle or “catch” runtime errors during the validation of expressions. If one would want to

ensure that an expression does in fact return a boolean value (not invalid) it is possible to use

a construct like shown in Listing 2.5. In this example the actual expression is validated and its

result assigned to a variable. Afterwards, the IfExpression checks whether the result is invalid

and if so returns false or the returned result otherwise.
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let ret : Boolean = ... in -- some expression resulting in a

boolean value

if ret = invalid then

false

else

ret

endif

Listing 2.5: IfExpressions for error handling

2.1.2.7 Loops

As previously explained, OCL is a declarative language and therefore loops in the traditional

sense do not exist unlike in iterative languages. But, certain operations defined on collections

“iterate” over its contents validate to a result based on its contents. Basically, they work

similar to a foreach loop in Java, iterating over each element, validate an expression using the

specific and combine it to a single result. Such loop operations can also be compared to reduce

operations well known from functional languages. Variables introduced by a loop expression

work differently than the ones used in LetExpression. They are called the iterator and refer

to the current element in the collection in each iteration. Defining the type of the iterator is

optional (set to the element type of the collection if missing) and even its name can be omitted.

If the iterator definition is not present an OCL parser has the responsibility to introduce one

by itself, with a unique name. Furthermore, a loop operation alters the current context of

the expression, i. e. if a property or operation call occurs inside the loop without specifying

the variable it refers to the iterator variable will be pretended instead of self. The standard

iterator operations are:

ForAll is the standard universal quantifier (∀) and returns a boolean value. It contains a

nested expression which also has to return a boolean value. The entire result is true if

and only if the nested expression holds for each element in the collection. Listing 2.6

shows an example that checks whether all elements in a collection of integers are in a

range between 0 and 99, or with logical symbols∀i ∈ numbers : i ≥ 0 ∧ i < 100. A

forAll expression may also use multiple iterators, which will both iterate over the entire

collection, effectively iterating over the Cartesian product of the collection. An example

for this is shown in Listing 2.7, stating if two persons are considered equal, their names

have to be equivalent as well.

Exists is the standard existential quantifier (∃). It works similar to the forAll expression, but

in this case it suffices for one element to satisfy the nested expression.

Select can be used the generate a new collection from an existing one, containing each element

that satisfies a nested expression. For example the expression shown in Listing 2.8 will first
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generate a sequence of integers in the range between 0 and 100 and afterwords generate

a new one containing only the even ones.

Iterate is the most basic of loop expressions and the type of the value it returns may be

defined by users themselves. Additionally to the iterator another variable has to be

defined called the accumulator. An initial value has to be assigned to the accumulator and

after each iteration the result of returned by the iteration is assigned to the accumulator

except for the final iteration after which the iteration result becomes the result of the

iterate expression itself. Due to the generality of the iterate expression the standard loop

expression can be expressed by means of an iterate expression. Listing 2.9 shows how the

examples from Listing 2.6 and 2.8 can be expressed using iterate expressions.

-- let numbers be a collection of integer

numbers ->forAll( i | i >= 0 and i < 100)

Listing 2.6: forAll Example

Person.allInstances()->forAll( p1, p2 | p1 = p2 implies p1.name =

p2.name

Listing 2.7: forAll Example with multiple iterators

Sequence{0 .. 100}->select( i | i.mod(2) = 0)

Listing 2.8: select Example

2.1.3 OCL translation examples

2.1.3.1 Using a List Index as Part of Constraint

Listing 2.10 shows an example of a constraint written in Java that states that each value in a

list of integers must not be greater than its index in the list. This can easily be done by using a

for loop iterating over the contents of the list using an index as the current index. As explained

imperative loops do not exists in OCL, but it is still possible to translate it into OCL as shown

in Listing 2.11. Instead of using a loop one has to create of new sequence of integers containing

all the values the loop would iterate over and apply the appropriate collection operation on this

newly created sequence.

result = true;

for (int i = 0; i < list.size(); i++)

result &= list.get(i) <= i;
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-- replacing forAll by iterate

numbers ->forAll( i : Integer; acc : Boolean = true |

acc and (i >= 0 and i < 100))

-- replacing select by iterate

Sequence{0 .. 100}->iterate{ i : Integer; acc : Sequence( Integer)

= Sequence{} |

if i.mod(2) = 0 then

acc ->including(i)

else

acc

endif

)

Listing 2.9: iterate Examples

return result;

Listing 2.10: List Index example in Java

Sequence{1 .. list ->size()}->forAll(i | list ->at(i) < i)

Listing 2.11: List Index example in OCL

2.1.3.2 Create a Collection of Attributes

Listing 2.12 shows an example that iterates over a set of people and constructs a new set

containing all the last names of the people in the original set. For this purpose OCL defines

a special collection operation called collect, as shown in Listing 2.13. The collect operation

returns a new collection containing the value of the given property of each element it iterates

over. This may also be achieved by using by using an iterate operation with the same behavior.

Set <String > lastNames = new HashSet <>();

for(Person p : people)

lastNames.add(p.lastName)

// do something with lastNames

Listing 2.12: Collection of Attributes example in Java

let lastNames : Set(String) = people ->collect(lastName)->asSet()

in

-- do something with lastNames

let lastNames : Set(String) = people ->iterate( p : Person; acc :

Set(String) = Set{} |
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acc ->including(p.lastName)) in

-- do something with lastNames

Listing 2.13: Collection of Attributes example in OCL

2.2 Java Platform Debugger Architecture

The Java Platform Debugger Architecture (JPDA) [33] defines a set of specifications, tools and

APIs to enable the debugging of a program running in a Java Virtual Machine (JVM). To some

degree our invariant checker can be considered being some sort of debugger in that it aims

at finding errors in a running program’s structure enabling us to use JPDA in the first place.

Obviously, the main purpose of JPDA is to debug applications written in the Java language

itself, although programs written in other languages may be used as well as long as they run in

a JVM (e. g. Scala). JPDA is also programming language independent regarding the debugger.

The JVM must implement the Java Virtual Machine Tool Interface (JVM TI) [34], which

is used to access the state of the JVM and influence the execution of applications used to

implement debugging, monitoring and profiling tools. JVM TI provides a mechanism to make

use of Agents able to hook into the running program and retrieve data from the JVM. JPDA

enables the debugger and the target application to run in different processes or even host

machines. To communicate between the processes JDPA defines the Java Debug Wire Protocol

(JDWP) [32] that specifies how the information between a debugger and a target application

is exchanged. JDWP only specifies the format of messages, not the transport, i. e. over which

medium the messages are exchanged. Usual transports are socket connections over TCP/IP

or communicating via shared memory. Common implementations of JVMs provide a native

Agent that implements the JDWP. To enable a target application to listen for incoming JDWP

connections special start-up parameters have to be provided when launching the application 1.

Generally, a debugger can either connect to an already running application (provided that it

has been started with proper arguments), or launch it from scratch establishing an immediate

connection.

JDPA also provides a high-level Java API called Java Debug Interface (JDI) [31], which

is shipped with the Java Development Kit. JDI covers most of the capabilities needed for

debugging provided by JVM TI and aims at simplifying the implementation of debuggers written

in Java (e. g. the Java debugger shipped with the Eclipse IDE is built on top of JDI). Our

implementation is also built on top of JDI and uses its capabilities to observe / query the

target application. The following subsections discuss the basic usage of JDI.

1See http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html for a detailed description
of connection options
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2.2.1 Connecting to Target Application using JDI

JDI provides three different kinds of Interfaces that can be used to establish a connection

between the debugger and the target application. Generally, all connectors return a mirror of

the target virtual machine after successfully establishing a connection.

LaunchingConnector: this connector is used for launching a new application to debug. It

essentially works as if the application is started from the operating systems command line

with all the necessary launching options provided. The application will be launched on

the same host machine as the debugger itself. After successfully launching the application,

the debugger is immediately connected to it and the target VM is suspended just before

entering the main(...) method. The debugger may now issue notification requests (see

Section 2.2.2) and afterward resume the application. If the debugger terminates while

the target is still running, the application may continue its execution but no methods for

reconnecting are supported. See Example 2.2.1 for a short explanation on how this kind

of connector may be used.

AttachingConnector: this connector is used for connecting or “attaching” to applications

already listening for incoming JDWP connections. Available transport methods depend on

the underlying operating system of the host machines of both the debugger and the target

application. This connection method is especially useful when debugging an application

that runs a different host machine. Example 2.2.1 shows how to use this kind of connector

using a socket connection for transportation.

ListeningConnector: This connector works similar to the AttachingConnector but the other

way around. In this case the debugger waits for an incoming JDWP connection from

the target application itself. Available transport methods are usually the same as for the

AttachingConnector.

Example 2.2.1 (Using the LaunchingConnector). Listing 2.14 shows a code snippet how to

launch a new application to debug. All necessary arguments must be provided, especially the

class containing the initial main(...) method to call as well as the class path. The class path

must include the location of the class containing the main(...) method. This example will

launch a new VM and call the main(...) method of class foo.Bar after resuming the VM.

LaunchingConnector connector = null;

VirtualMachine vm = null; // mirror to launched VM

for (LaunchingConnector c : Bootstrap.virtualMachineManager().

launchingConnectors()) {

if (c.name().equals("com.sun.jdi. CommandLineLaunch")) {

connector = c;

break;
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}

}

Map <String, Connector.Argument > arguments = connector.

defaultArguments();

Argument mainArg = arguments.get("main");

mainArg.setValue("foo/Bar"); // class containing the main (...)

method

Argument optionArg = arguments.get("options");

String classPath = "..."; // enter required class path here

String options = "..."; // addtional options; e.g. arguments

provided to main method

optionArg.setValue("-cp␣" + classPath + "␣" + options);

try {

vm = connector.launch(arguments);

} catch (IOException e) {

// transport error; handle exception

} catch (IllegalConnectorArgumentsException e) {

// illegal arguments provided; handle exception

} catch (VMStartException e) {

// target application terminated abnormally; handle exception

}

...

Listing 2.14: LaunchingConnector code snippet

Example 2.2.2 (Using the SocketAttachingConnector). Listing 2.14 shows a code snippet

how to connect to an already running application listening for incoming JDWP connections.

In this example it is assumed that the target application runs on host with address 10.10.10.10

and is listening on port 8000 for incoming connections. The optional timeout argument given

in milliseconds states how the connector should wait for a connection to be established. If

no connection can be established within the given timeframe the attach(...) method will

terminate abnormally and throw an TransportTimeoutException. The timeout defaults to 0

meaning that the attach(...) method will wait forever until a connection is established.

AttachingConnector connector = null;

VirtualMachine vm = null; // mirror to launched VM

for (AttachingConnector c : Bootstrap.virtualMachineManager().

attachingConnectors()) {
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if (c.name().equals("com.sun.jdi.SocketAttach")) {

connector = c;

break;

}

}

Map <String , Connector.Argument > arguments = connector.

defaultArguments();

Argument hostname = arguments.get("hostname");

hostname.setValue("10.10.10.10"); // target host name or

address

Argument port = arguments.get("port");

port.setValue("8000"); // listening port for incoming JDWP

connections

Argument timeoutArg = arguments.get("timeout");

timeoutArg.setValue("0");

try {

vm = connector.attach(arguments);

} catch (TransportTimeoutException e) {

// connection timed out; handle exception

} catch (IOException e) {

// transport error; handle exception

} catch ( IllegalConnectorArgumentsException e) {

// illegal arguments provided; handle exception

}

...

Listing 2.15: SocketAttachingConnector code snippet

2.2.2 Notifications

The main purpose of JDI is observing events occurring in the target application. Figure 2.7

shows an overview of available observable events. Most of the events in this figure will not

be discussed in detail here since they are either irrelevant for this work or not extensively

used. Furthermore their names quite obviously state their purpose. LocatableEvent has further

subtypes shown in Figure 2.8. The Location associated with a LocatableEvent states the method

and the line number in the applications source code where the event occurred. Note that the

line number is only available if the application has been compiled with the appropriate option

set.
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Event

request : Request

ClassPrepareEvent

type

ClassUnloadEvent

className : String

LocatableEvent

thread : Thread

ThreadDeathEvent

thread : Thread

ThreadStartEvent

thread : Thread

VMDeathEventVMDisconnectEventVMStartEvent

Figure 2.7: JDI event overview

Location

method : Method

lineNumber : Integer

BreakpointEvent

LocatableEvent

thread : Thread

ExeceptionEvent

catchLocation : Location

exception : Object

MethodEntyEvent MethodExitEvent

returnValue : Value

StepEventWatchpointEvent

field : Field

object : Object

value : Value

AccessWatchpointEvent ModificationWatchpointEvent

valueToBe : Value

*1

- location

Figure 2.8: Locatable Events

The most important thing to note about JDIs notification mechanism is that nothing will

be forwarded to the debugger if not specifically requested beforehand. For example when a

debugger wants to observe MethodExitEvents it has to explicitly state so by creating a corre-

sponding request. The structure of available requests essentially matches those of the events,

i. e. for every event type a request type exists. Such requests may be enabled or disabled at

any time. Furthermore, filters can be applied to requests stating that notifications should only

be forwarded to the debugger if the event occurs for a given class, field, object, etc. Table 2.5

shows an overview of the filtering options for events used in our implementation.

Whenever certain events occur the debugger may want to suspend the target application to

let a user investigate it. Therefore additional to the filtering options the debugger also has to

specify a suspend option when creating a request. The available suspend options are:

Event Filtering options

Class loading / unloading Class
Method entry / exit Thread, Class, Object

Field access / modification Field, Thread, Class, Object
Breakpoint Location, Thread, Object

Table 2.5: Notification Filtering Options
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Suspend None: Does not suspend anything. Anyhow, the event notification must be pro-

cessed by the debugger although the target application proceeds to run in parallel. Be

aware that if any values are accessed in the target application by the debugger, they may

have already changed in the mean time.

Suspend Thread: Only suspends the thread in the target application in which the event

occurred. The thread is locked in the state when the event occurred. All other threads

proceed to run normally.

Suspend VM: Suspends the virtual machine of the target application, i. e. all existing threads

in it.

No matter what suspend options had been chosen for requests, JVM TI ensures that all event

notifications are forwarded in the order they occurred.

2.2.3 Accessing Values in Target Application

Additionally to observing a target application a debugger usually wants to access current values

of fields and method variables during execution. Whenever a debugger suspends the target

application it is usually because users want to investigate the current state of the application.

In our case there is no human user investigating the application, they get “replaced” by the

automated invariant checker (In a way the invariant checker can be considered as the user). An

important thing to note is that JDI does not allow to directly access values in the target. The

debugger only holds Mirror objects, representing the actual values. Whenever the debugger

accesses an attribute or calls a method on such a mirror, JDI communicates with the target

application via JDWP to retrieve the actual information. Note that due to this fact every

retrieval of information requires communication overhead. Value types known by JDI are shown

Figure 2.9 and additionally PrimitiveType has subtypes for each primitive type that exists

in Java (int, boolean, . . . ). Those subtypes provide methods to retrieve the actual values

associated with the mirror. ObjectReference represents a reference to some object and provides

methods to access / modify the fields of the object and invoke methods. Some reference types

are treated specially, which are strings (instances of java.lang.String), arrays (reference to

an array), and class objects (instances of java.lang.Class). StringReferences allow to retrieve

the actual string as an instance of java.lang.String, and ArrayReferences provide a way to

access the values contained in the array.

JDI also allows to retrieve reflective type information (e. g. querying the type of a value).

The available information closely resembles the one provided by the java.lang.reflect pack-

age. This information is also accessed using Mirror objects, also causing communication over-

head.
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Value

type : Class

ObjectReference

getValue ( field : Field ) : Value

setValue ( field : Field, value : Value )

invokeMethod ( thread : Thread, method : Method, arguments : Value [*] ) : Value

PrimitiveValue

StringReference

value : String

ArrayRefence

values : Value [*]

ClassObjectReference

Mirror

Figure 2.9: JDI Value Types
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Chapter 3

Approach

In this chapter we describe how our invariant checking mechanism works in detail. Section 1.2

gave a general overview of what our approach deals with. Section 3.1 shows what kind of

runtime structures we consider and introduces the data structures we use internally to keep

track of invariants, their current results and any information we need to recognize if some

invariant needs to be revalidated. Sections 3.3 and 3.4 illustrate what kind of events we observe

in a running systems and how those events are used for invariant checking respectively.

3.1 Basic Definitions

For simplification purposes when describing how our approach works we define a simplified ob-

ject orientated system as shown in Figure 3.1. We do not deal with concepts such as interfaces,

primitive types etc. Each type corresponds directly to a class. A class defines a set of methods

and fields, which are passed down to its subclasses and inherits those of its superclasses. Al-

though the definition of a field belongs to a class, its concrete value depends on the object it

belongs to. The somewhat obvious contracts for accessing fields and invoking a method of an

object are formalized in Listing 3.1.

As already pointed out in Section 1.2, we used the Java language for the reference imple-

mentation, which provides more concepts than the ones shown in Figure 3.1. Note that all

concepts of Java are all fully supported, most notably Interfaces and Primitive Types.

Our approach is based on the ModelAnalyzer approach by Egyed et al. [10, 36, 9] and uses

similar data structures, especially the notion of scope elements and rule instances. Simply

put those elements are used to keep track of invariants in their results the current results of.

Figure 3.2 shows the structure of those concepts and how they are related. The upcoming

definitions will give a detailed description.

Definition 3.1.1 (Expression). Our approach uses its own language and validation engine.

Although OCL is used as the constraint language, only its concrete syntax is used. The abstract
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ClassObject

Method

isConstructor : Boolean

returnType : Class

invoke ( object : Object, args : Object [*] ) : Object [*]

Field

getValue ( object : Object ) : Object

setValue ( object : Object, value : Value ) : Object

*- subClasses

*- superClasses
1- class

*- instances

1- class

*- fields

1- class

*- methods

Figure 3.1: Simplified object orientated structure

Invariant

name : String

context : Class

definition : String

description : String

syntaxTree : Expression

InvariantInstance

contextElement : Object

result : ValidationResult

validationTree : Expression [0..1]

validate ( ) : Boolean

ScopeElement

object : Object

field : Field

value : Object

{self.object.oclIsKindOf(field.class)}

{syntaxTree.resultType.oclIsTypeOf(Boolean)}

{contextElement.oclIsKindOf(invariant.context)}

«enumeration»

ValidationResult

NONE

VALID

INVALID

ERROR
1..* - ii

* - scope

1 - invariant

* - ii

Figure 3.2: Structure of used data elements
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context Field:: getValue(object : Object) : Object [*]

pre: object.oclIsKindOf(self.class)

post: result->forAll(x | oclIsKindOf(self.type))

context Field:: setValue(object : Object , value : Object)

pre: object.oclIsKindOf(self.class)

value.oclIsKindOf(self.class)

context Method ::invoke(object : Object , args : Object [*]) :

Object [*]

pre: object.oclIsKindOf(self.class)

args ->size() = formalArguments ->size()

Sequence{1..args ->size()}->forAll(i | args ->get(i).oclIsKindOf

(formalArgs ->get(i)))

post: result->forAll(o | o.oclIsKindOf(returnType))

Listing 3.1: Method contracts for accessing field values and invoking methods

language used has been inspired and hence available expressions are similar to the OCL ones

described in Section 2.1.2. From a user point of view this behavior is entirely irrelevant, the

parser takes care of mapping the definitions of OCL expressions to the ones actually used. The

expression constructs used in our approach do not just represent the abstract syntax, each

expression provides an operation to validate itself (given proper context), meaning that there

is no additional dedicated validator involved. Additionally they store the calculated result to

perform bottom-up validation for further revalidations in the future if desired (see Section 3.4.4).

Definition 3.1.2 (Publicly visible State). In a single threaded application an object is in a

publicly visible state whenever a method of this object can be called from the outside (i. e. a

method in another object). It transitions out of a publicly visible state as soon as a method of

this object is called from the outside and the object controls the execution flow of the program.

It transition back into a publicly visible state whenever it gives up control of the execution flow

of the program, i. e. returning from a method of the object to a method which does not belong

to the same object. As far as invariant checking is concerned, invariants have to hold whenever

an object transitions into or out of a publicly visible state. Callers assume that the object is

in a valid state when using its functionality and that it is still valid after the operation has

been performed. It is not necessary to check invariants every time a method on an object is

called from the outside, it can be relaxed to only check if it is in a publicly visible state for the

very first time (after its construction) or whenever it transitions into one, due to transitivity.

Other approaches tend to treat invariants as being part of the precondition of every public

method, which may work in most cases but introduces the problem that they now also have to

hold between recursive method calls or simply when an object invokes another public method

on itself. This means that intermediate invalid states between the method calls are treated as

errors, which is entirely irrelevant from a global perspective since no other object can use its
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functionality anyhow. The important thing is that after the last call (returning to a method of

another object) it is ensured that the object is in a valid state.

This definition does fully apply to multi-threaded applications where public visibility is

thread-wise and depends on synchronization. This work does not deal with this problem and

treats every application if it were single-threaded, which may lead to errors and incorrect

invariant validation results.

Definition 3.1.3 (Invariant). As previously mentioned we only consider class invariants. A

class invariant is simply a logical expression that has to hold for every instance or object of a

given class, or rather any kind of type, whenever it is in a publicly visible state. We call this

type the invariant’s context. Simply put, an invariant limits the set of valid states of an object.

An object is in a valid state whenever all invariants defined for its type hold, i. e. validate to

true. In an object oriented language a type may also have supertypes. All invariants defined for

the supertypes are inherited, meaning that not only the ones defined for its specific type have

to hold, but also those defined for the supertypes as well. The definition of the invariant is the

actual constraint that must hold for every instance of its context. Currently we use OCL as the

front-end constraint language, but due to the fact that it only used for defining the constraints

(as described in Definition 3.1.1) it could be changed to another language quite easily. The

concrete syntax is only used for the definition of invariants and a front-end representation of

the constraint. After its definition a parser will immediately convert this into an abstract syntax

tree (AST) based on our expression concept. Figure 3.3 shoes the syntax tree corresponding

to the CorrectlyLinked invariant introduced in Figure 1.1. Tree nodes depicted using an oval

shape indicate expressions validating to a boolean value, whereas diamond shapes are used

for variables or field accesses returning the accessed object (always a Node in this case). The

variable self is used in the same manner as in OCL, it refers to the context element the

constraint is applied to.

The formal definition of an invariant may become quite complex and a different developer

might not understand its meaning or purpose at first glance. Thus, we provide an additional

description field which has no formal meaning, but should be used to enhance the understand-

ability why the invariant exists and what it is used for. Additionally an invariant may have

a name for identification purposes. An invariant is related to a set of invariant instances (see

Definition 3.1.4). This set may potentially be empty if no instances of the invariants context

exist yet.

Further examples will refer to an invariant in the format Name[context], e. g.

CorrectlyLinked[Node] (Table 3.1 shows the complete definition of this invariant).

Definition 3.1.4 (Invariant Instance). An invariant instance is an invariant applied to a specific

object. While the invariants context states the type for which it has to hold, the invariant

instances context element refers to the concrete object. This context element has to be an

instance of the context of the invariant. At any point in time during the execution there exists

exactly one invariant instance per combination of invariant and object. An invariant instance
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CorrectlyLinked[Node]

⇒

¬

=

next

self

null

=

prev

next

self

self

Figure 3.3: Syntax Tree of invariant CorrectlyLinked

name: CorrectlyLinked
context: Node

definition: next <> null imples next.prev = self

description; Checks whether the back pointer of the next Node is properly set
ii ∅

Table 3.1: Invariant example
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is related to a set of scope elements (see Definition 3.1.5). This set of scope elements is empty

in two cases: either the invariant instance has been newly created and not validated yet, or no

field is accessed during the validation (indication of a useless invariant since the systems state

is not queried at all).

Further examples will refer to an invariant in the format InvariantName(ce, r, S), where ce

is the context element, r the current result and a set of scope elements S, e. g.

CorrectlyLinked(first, Valid, {(first, next), (second, prev)}) . We may also just use

InvariantName[ce] if we do not care about the result or scope. The result of the validation

can have one of four possible values:

None: there is no result, meaning that the invariant has been properly initiated but not yet

validated. An invariant has this type of result only for a short period.

Valid: the constraint is valid for the given context element, i. e. validating the expression

associated with the invariant returned true for the invariant instance’s context element.

Invalid: the constraint is invalid for the given context element, i. e. validating the expression

associated with the invariant returned false for the invariant instance’s context element.

Error: Indicates the occurrence of a runtime error during the validation, e. g. accessing fields

of null values, division by zero, etc.

Definition 3.1.5 (Scope Element). A scope element is an element in the target environment

that contributes in some way to the outcome of an invariant instance’s validation. Since class

invariants are used to specify the set of valid states of an object and the state is given by its

fields values, a scope element is a field of a specific object most of the times. In case of class

fields (static fields in Java) the reflective class object is used instead of a concrete instance. A

scope is thus a tuple consisting of an object and a field and we will further refer to them in the

format (object, field). A scope element for a given object and field combination may exist only

once, meaning that one scope element may be used by multiple invariant instances. It comes

into existence whenever a fields value is accessed for the first time during an invariant instance’s

validation. Additionally, we have to assure that it is removed if it is no longer used by any

invariant instance. This is done by emptying the set of scope elements prior to the validation.

Definition 3.1.6 (Changes). As mentioned in Section 1.5, our approach reacts to changes

occurring in the target system. The state of a system can change through the creation or

deletion of an object, or the modification of one of the object’s fields (scope element). Possible

changes and their structure are shown in Figure 3.4. Essentially a change is a 3-tuple, describing

the type of change, the changed object and the changed field respectively. The field may be

missing (null) if the change is not a modification. For example (MOD, third, next) denotes that

the field next of object third has been modified. The upcoming sections describe how we make

use of those changes in our invariant checking approach.
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Change

object : Object

field : Field

«enumeration»

ChangeType

NEW

DELETE

MODIFY

{type <> MODIFY implies field = null}

* 1

- type

Figure 3.4: Possible changes

3.2 Architecture

Figure 3.5 shows an overview of the approach, which closely resembles the one of the actual

implementation (for implementation details see Chapter 4). The following subsections discuss

the responsibilities of each component and how they are connected, or more specifically what

information they exchange. The arrows depict the directions of information flows between these

components. Implementation details of those components are discussed in Chapter 4.

3.2.1 Observer / Wrapper

This component serves as a layer on top of the target runtime. It is primarily responsibly for

two tasks:

1. Observing the target system forwarding notifications about occurring events. The event

notifications necessary are further explained in Section 3.3.

2. Providing a way to access data needed for invariant validation. The data it has to be

able to provide is the same as if the invariant checking mechanism would run in the

target runtime. This is mainly, but not not limited to, accessing values of object fields,

retrieving reflective type information and calling methods in the target runtime. How

this is implemented is essentially irrelevant, as long as this information can be gathered

somehow. In the simplest case this component could be omitted entirely if the invariant

checking would run in the same environment as the target system and would have direct

access to its data structures.

Additionally to those main tasks the wrapper must provide a way to connect to an already

running target system or start it from scratch.
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tr l
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torage

Target Runtime

Invariant Analyzer 
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Notify events

Constraint Checker

Return results

Validate invariant

instances

Query runtime

data

Observer / Wrapper

Invariant

Definition

Storage

User

Interface

Report results

Establish connection

Request connection

Retrieve /

Update data

Load predefined invariants

Figure 3.5: Architecture Overview

3.2.2 Constraint Checker

This component’s purpose is to check actual invariants instances. It is currently based on

our expression concept, meaning that it is not an actual component rather than an expression

associated with an invariant knows how to validate itself. Theoretically, this could easily be

exchanged by using a dedicated constraint checking component, as long as it yields the same

results (e. g. using a proprietary OCL checking engine). In our case the result is not only

the truth value associated with the actual validation of the constraint, but also the scope

elements accessed during the validation. Most proprietary engines will not be able to provide

this additional information, but could still be if the fields accessed in the target runtime would

also be observed.

3.2.3 Central Data Storage

This is simply a data storage that holds all required information regarding invariant checks, i. e.

invariants, invariant instances, scope elements, etc. It must provide an interface such that the

core component is able to retrieve and update all necessary data. In the following algorithms

and examples the current set of invariants is referred to as I, invariant instances as II and

scope elements as SE.
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3.2.4 Invariant Definition Storage

This is just an “offline” convenience storage and is not required for the core functionality of

our approach. Once a user defines an invariant she may not want to do this step over and over

again every session. The definition storage thus provides a way to save the entire definition of

an invariant (including non-functionally required fields such as the description) for later use.

This could be implemented in many different ways ranging form simple text files to a complex

database systems.

3.2.5 User Interface

Users need some way to interact with the invariant checker. Our user interface provides the

following features:

Invariant definition: User are given an editor providing means to provide all data necessary

to define the invariants.

Visualizing validation results: Views showing the results of invariant validations (including

scope elements) and enabling further inspection. Although it may not be necessary to

provide immediate feedback of all invariant validations (sometimes simple logging and

later analysis of the results may be sufficient) it is still a nice thing to have.

Establish connection to target runtime: Whether the target environment is already run-

ning or started from scratch users need to be able to configure certain connection param-

eters and initiate the connection. users are also able to cut this connection at any time,

effectively stopping all invariant checking.

3.2.6 Invariant Analyzer Core

The core centralized component takes care of the interoperability of the other components, i. e.

telling them what to do. Each of the other components separately is pretty worthless without

interconnections among them, e. g. the constraint checker has no use without knowing what

to check and what to do with the results. We did not want connect the other components

directly since each one could be used in other environments as well. The main tasks of the core

component are as follows:

• Instructing the observing component which notifications are relevant. This is derived

from the outcome of previous invariant validations (especially accessed scope elements).

• Dispatching the required invariant checks to the constraint checker. The core component

analyzes incoming change notifications, determining which invariant instances may be

affected by them or if the creation of new ones is necessary. It will then instantiate invari-

ants if necessary and order the constraint checker to validate those invariant instances. It
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may also delete certain invariant instances entirely if it comes to the conclusion that they

are no longer needed, i. e. the object it relates to does no longer exist.

• Updating the user interface. Strictly speaking, it will not actually update the user in-

terface directly since we follow a strict Model-View-Controller (MVC) principle. But,

somehow the user interface needs knowledge whether some data changed and update the

views, which the core component takes care of.

• Receiving modifications form the user interface. The interaction between the user interface

and the core component is not just in one direction. A user may of course modify specified

invariants, add new ones etc. in which case appropriate processing of these events is

required.

3.3 Observing the Runtime Environment

As previously mentioned our approach reacts to changes in an observed run time environment.

The core component processes notifications of events in the target application, creates a Change

object if necessary and stores it for further processing. Most common changes are field assign-

ments and the creation / destruction of objects. Those changes do not necessarily trigger the

validation of an invariant instance immediately. Thus, we simply store this information for

further processing later on, described in Section 3.4.

3.3.1 Creation of New Objects

Since we use our notion of invariant instances, we need to keep track of the objects existing in

the target environment. Of course not every object creation is relevant in our case. We only

need to be informed about new objects that are instances of a class for which an invariant exists

in the invariant repository, i. e. Invariant.allInstances()->collect(context)->exists(

context | object.oclIsKindOf(context))

Generally, invariants only have to be satisfied if the object has been fully instantiated.

Directly after the creation of an object, i. e. no fields have been initialized, most invariants

would most certainly fail. Thus, no invariant check will be triggered, although we still need

to be aware that this change occurred. At this point, it may be valid to create an invariant

instance for all invariants whose context matches the objects class. We decided not to do this

since it suffices to create the instances when the actual validation is triggered.

3.3.2 Scope Element Changes

Usually, in an object orientated system, the state of an object will change over time. Whenever

the value of a scope elements changes the result of an invariant validation may change as well.

Since intermediate invalid states are allowed (as long as the object is not publicly visible) it is
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not desired to trigger a revalidation right away. Ordinarily those changes are assignments to

fields of an object (scope element). The type of a field may also be an array or a collection. In

those cases we also need to recognize whenever its contents changes.

Example 3.3.1. Consider we would add a method link to the definition of the Node class, like

shown in Listing 3.2. If one would make a method call third.link(n), after the statement

next = n we recorded that the scope element (third, next) changed. Triggering the revalidation

of the CorrectlyLinked invariant would indicate a violation, which is in fact not the case since

object third is not publicly visible yet. After the n.prev = this statement, this violation will

resolve itself, showing the need of intermediate invalid states. Anyhow, since without actually

validating the invariant at some point, we can not certain that the violation is resolved. Thus,

we still record the changes: {(MOD, third, next), (MOD, n, prev)}.

void link(Node n) {

next = n;

n.prev = this;

}

Listing 3.2: Link method

3.3.3 Destruction of Objects

In an object orientated environment, objects have a limited lifetime. Although the disappear-

ance of an object will not change the outcome of any invariant instance, it may cause an

invariant instance to become obsolete. There are different reasons that cause the destruction

of an object. This depends on whether the object had been allocated locally on a methods

stack frame or globally on the heap and whether or not the runtime environment makes use of

memory management with a built-in garbage collector. We do not care why the destruction of

an object occurs, we just need to be informed that such an event happened, so we can remove

associated invariant instances.

3.3.4 Observing Operation States

An operation or method has no explicit state per se, but we can indirectly treat the fields

accessed during the execution of an operation as its state. Imagine an invariant uses an instance

method in its definition e. g. the invariants depending on the size() method in our linked list

example. The current size of the list could be stored in a separate field, or calculated each

time depending on the implementation. In such a case we need to keep track of any fields

size() may access. A change introduced to one of those fields may cause the method to return

a different value and therefore possibly change the result of the invariant instance. Since it

is impossible to know a priori which scope elements are accessed by a particular method, we
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observe the execution of the method itself. In particular we record each field access of a method

and add all of those to the scope of the currently validated invariant instance.

3.4 Invariant Checking Mechanism

Observing changes performed on the data structures of the target system has no use with-

out proper context. This section shows how the observed changes are used to trigger the

(re)validation of invariant instances if necessary. Simply put, in addition to observing the exe-

cution of a system, we also observe the validation of the invariants themselves. For every field

access we construct a scope element and add it to the scope of the currently validated invari-

ant instance. This information can then later be used to decide whether the revalidation of

an invariant instance is necessary. Additionally, it will be discussed how checking a particular

invariant instance works in detail.

3.4.1 Creation of New Invariant Instances

Previously, we stated that due to the mere creation of an object no invariant instance will be

created. But, this needs to happen eventually, at least after the initialization of the object is

completed. We know that the instantiation of an object is completed at the end of a constructor

method. In case a constructor calls other constructors of the same object (especially ones

defined in a super class), we need to ensure that we only react to the last return in this chain of

constructor calls. After complete initialization we collect all invariants defined for its class and

superclasses. The collected invariants are immediately instantiated for the previously created

object and validated.

Example 3.4.1 (Creation of a new Node object). Imagine during an execution that uses our

linked list example at some point a new Node n is created. After the instantiation is complete,

we collect all invariants and instantiate them as well, which are CorrectlyLinked and ElementRe-

ferenced in this case, lets call them CL[n] and ER[n] respectively. After initialization their re-

sults are CL(n, None, ∅) and ER(n, None, ∅) We validate those invariant instances and store their

scope. Since initially the value of the field next is null and our constraint checking engine uses

short-circuit evaluation, the prev field will not be accessed. After the evaluation is completed,

we store the scope of the invariant instances and report the result. In this example the built-up

scope and results would be CL(n, V alid, {(n, next)}) and ER(n, Valid, {(n, element)}). It is

noteworthy that the invariant instance ER[n] must only be validated after initialization. One

can clearly see from the source code that the scope element n.element is never subject to change

and no other other could possibly be accessed due to the invariants definition. Since our ap-

proach will never recognize a change for this scope element, it remains a one time validation.

Other approaches may not recognize this behavior or perform this optimization, resulting in

checking the invariant every time the object transitions into a publicly visible state.
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Algorithmus 1 Analyzing Changes and dispatching Invariant Instance validations
Input: a set of changes CS

IIe ← ∅ {the set of invariant instances to validate}
IIc ← ∅ {the set of newly created invariant instances}
IIr ← ∅ {the set of removed invariant instances}
for all change ∈ CS do

if change.type = MOD then
for all se ∈ SE do

if se.object = change.object∧ se.field = change.field then
IIe ← IIe ∪ se.iinstances

end if
end for

else if change.type = NEW then
for all i ∈ {x ∈ I | change.object.type � x.context} do

instantiate new invariant instance ii of invariant i with context element change.object

IIc ← IIc ∪ {ii}
end for

else if change.type = DELETE then
for all ii ∈ {x ∈ II | x.contextElement = change.object} do

IIr ← IIr ∪ {ii}
end for

end if
end for
IIe ← IIe ∪ IIc

II ← II ∪ IIc

II ← II \ IIr

report creation of invariant instances IIc

report removal of invariant instances IIr

for all ii ∈ IIe do
validate invariant instance ii and update its scope
report new result and scope of ii

end for
perform scope clean-up

3.4.2 Triggering Revalidations

Whenever an object transitions from a non publicly visible state into a publicly visible one

(usually happening after exiting a public method), we trigger a revalidation of the existing

invariant instances. This works incrementally, meaning that at it does not trigger the revali-

dation of all existing invariant instances. Essentially, the revalidation has two separate steps:

collecting the relevant invariant instances and actually reevaluating them and updating their

scope. Collecting the invariant instance for revalidation, instantiating new ones and removing

irrelevant ones is done by analyzing the previously collected changes and reacting accordingly,

as outlined in Algorithm 1.
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Example 3.4.2 (Unchanged scope). Consider the running program is at the end of the method

call third.setPrev(first), in the initial state of our list example shown in Figure 1.2a.

At this point we collected the scope element changes {(MOD, third, prev)}. We now collect

all invariant instances, which is only CL(second, Valid, {(second, next), (third, prev}) in this

case. After revalidating this invariant instance it will now return false, i. e. our approach

detected an invariant violation since second.next.prev <> second. However, in this case the

scope remains unchanged, it still accesses the fields {second.next, third.prev}. Meaning

the invariant instance now looks like CL(second, Invalid, {(second, next), (third, prev})

Example 3.4.3 (Updated scope). In the previous example the result of the invariant instance

changes and the scope did not. Obviously, the scope of an invariant instance is also subject

to change over time, commonly caused by modifying collection contents as well due to the use

of short circuit evaluation. The initial scope of CL[third] contains only (third, next). Now

consider the node n created in Example 3.4.1 and we make a call to third.setNext(n). This

would of course cause the invariant instance CL[third] to be revalidated. Since the next pointer

is actually set now, it would also validate the next.prev = self part, causing the invariant

instance to both fail and update its scope to CL(third, Invalid, {(third, next), (n, prev)}.

Note that leaving a public method does not necessarily trigger invariant validations. A

fair amount of methods do simply query the query the state of an object without actually

modifying it (“getter” methods). In such a case whichever invariant did hold beforehand will

hold afterward and vice versa. Other approaches offer the ability to mark such methods as

simple queries, instructing it to not generate / perform any invariant checks after said method

(see Chapter 6). Using such markers is another possibly source for human introduced errors.

During the evolution of a software system a simple query may become on operation that does

change the state of an object. Not removing the markers in this case may cause errors to get

unnoticed. Using our approach this is not required, it will be detected automatically during

runtime. Since no changes were recorded during the methods execution, no invariant checks

will be triggered.

3.4.3 Scope Clean-up

After performing the revalidation of the necessary invariant instances, their scope may have

changed. This means that the global scope has to be updated as well and the invariant instances

each scope element refers to, as shown in Algorithm 2. This is done by iterating over the set

of scope elements and invariant instances. The set of invariant instances a scope element se

refers to is set to the union of all invariant instances which accessed this scope element. All

scope elements accessed by any invariant instance are added to the global scope to ensure that

it contains newly accessed ones. If after the iteration the set of invariant instances the scope

element refers to is empty, it will be removed from the global scope.
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Algorithmus 2 Updating global Scope
for all se ∈ SE do

se.ii← ∅
for all ii ∈ IIe do

SE ← SE ∪ ii.scope

if se ∈ ii.scope then
se.ii← se.ii ∪ {ii}

end if
end for
if se.ii = ∅ then

SE ← SE \ {se}
end if

end for

3.4.4 Constraint Checker

The constraint checker is an adaption of the one developed for the ModelAnalyzer [38] and

this section shows how it is used to validate particular invariant instances. This work does not

use a proprietary OCL validator to check the invariants defined as OCL constraints, instead a

customized version of the constraint checker implemented for the ModelAnalyzer is used. The

specialty of this constraint checker is, that it defines its own abstract syntax, which has been

influenced by OCL, but does not define a concrete syntax. Implementations may theoretically

use the concrete syntax of any language, but have to ensure that it is properly parsed into the

used abstract syntax. This constraint checker has originally been designed to check constraints

imposed on models written in UML. In the line of this work an existing OCL parser has been

adapted that is able to create the proper structures and can deal with Java types (especially

the type mappings, as explained in 2.1.1.2).

When an invariant instance is validated, the syntax tree of the invariant will be copied and

attached to the instance. We call this tree the validation tree. Its structure is essentially equal

to the syntax tree, but expressions may store their result for later use and expression accessing

the values of scope elements (field access, method calls, ...) hold a reference to those scope

elements. Figure 3.6 shows an example validation tree of the invariant instance CL[first].

As a reminder the definition the invariant in OCL is: next <> null implies next.prev =

self The edge labels in the tree depict the current result of the expressions and references to

scope elements are shown as dashed lines. A specialty of the constraint checker is that it offers

two different modes for checking constraints, a top-down and a bottom-up one. Users may

define what mode should be used per invariant individually. Using bottom-up validation causes

most invariant instances to get validated faster, while requiring more memory to keep track of

the validation trees. When a users expects an invariant to be validated quite frequently it is

recommended to use bottom-up validation to benefit from the speed-up and on the other hand

use top-down validation to save memory.
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Figure 3.6: Validation Tree of CL[first]

3.4.4.1 Top-Down Validation

This mode works like traversing a tree beginning at its root down to the leaves, similar to a

depth-first search algorithm. Each expression will first validate its children (subexpressions)

and afterward combine their results to its own one. For example an expression expressing

equality will first validate the left and the right side and afterward compare whether the two

results are equal. It will also make use of short circuit evaluation, meaning the right hand side

will only be validated if necessary. Figure 3.7 shows the validation tree of invariant instance

CL[third]. In this case the right hand side of the implication has not been validated (indicated

by using dotted lines) since it is already guaranteed to be true after validating the left side. All

logical expression support this behavior. When using this mode, the entire validation tree will

be discarded (removed from memory) after the validation is completed.

3.4.4.2 Bottom-Up Validation

When this mode is set, evaluating an invariant instance will not begin at its root expression if

there is already a validation tree present. Instead, validation begins at expressions referring to

changed scope elements. Those expression will query the new value of the scope element and

afterward instruct its parent expression to revalidate itself. An expression will not validate any

of the children that have previously been validated, but instead use the result of a previous

validation (but use the new results pushed upwards). Whenever the new result of expression

differs from the old one, revalidation of the parent is triggered.
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Expressions iterating over collections benefit most from this mode since it performs loop

unrolling. E. g. a universal quantifier is not treated as a single expression, instead it is broken

down into a series of conjunctions. This means that the time necessary to validate the expres-

sion will not grow with the number of elements it would iterate over. Instead, whenever the

expression is revalidated, only the subexpression in the series of conjuntions which is affected

by the change of a scope elements value will be revalidated.

Example 3.4.4 (Partial revalidation). Consider the validation tree of invariant instance

CL[first] in the state shown in Figure 3.6. Now we change the value of scope element

(second, prev) to third (by calling second.setPrev(third)). This causes the invariant instance

CL[first] to be revalidated, but now instead of revalidating it entirely, we start at the ex-

pression referring to the scope element (second, prev) and work our way upwards. Figure 3.8

shows which expressions need to be reevaluated in this by using solid lines and dotted lines for

untouched ones . Since the value of (second, prev) changed too, the revalidation of the equals

expression is triggered since it also may yield a different result now. Since its result actually

did change, it will again trigger the revalidation of the implication, causing the entire invariant

instance to change its result. The clear advantage is that it was only necessary to revalidate 3

out 10 expressions to detect the violation.
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Chapter 4

Implementation Details

Our prototypical implementation has been fully implemented in the Java programming lan-

guage and is able to observe and check invariants for arbitrary programs running in a Java

Virtual Machine (JVM). It has been built on top of the Eclipse Rich Client Platform and is

fully functional. Essentially, the components described in Section 3.2 have been implemented,

i. e. their functionality and communication between the components. All of those compo-

nents could theoretically be exchanged, given they provide similar functionality, meaning that

approach can be adapted to work with other constraint languages or runtime environments.

But, the implementation is merely a prototype as of yet, not strictly following rules imposed

by component based architectures. This makes it hard to actually adept it in practice and

improvements should be made in the future (see Section 7.6).

4.1 OCL Constraint Checker

There are many implementations of OCL constraint checking / query engines out there, but as

already mentioned the constraint checker initially developed for the ModelAnalyzer has been

used. OCL aims at providing means to enrich MOF based models with additional constraints

not expressible in the language itself. In this domain the assumption is that a predefined meta-

model is present, used by the parser to perform type-checks. Certainly, a program written in

Java is neither based on MOF nor does a fixed meta-model exist during runtime. As a matter

of fact, it changes each time the runtime environment loads a new class. The currently available

classes and their relations (including methods and fields) can be treated as the meta-model of

the program being executed. Basically, there were two ways around the obstacle of static type

checking, either ignoring them statically and performing them dynamically during runtime or

adept an OCL checker to cope with the different environment. Since we prefer statically typed

languages for the sake of avoiding errors during constraint definition, we wanted our constraint

checker to still be able to perform those checks. Actually adapting an existing implementation
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such that it suits our needs seemed infeasible so we decided to build our own. Fortunately, the

concepts of OCL / MOF and Java are quite similar for the most part (hence the “Object”). An

existing parser capable of parsing OCL constraints into the expressions used by the constraint

checker has been adapted to being able to perform proper type checks for Java classes. In

Sections2.1.1.2 we showed how standard OCL types are mapped to the Java ones. Some parts

of the constraint checker itself also had to be adapted, i. e. how certain expression are validated.

This was mostly the case for (but not limited to) expressions responsible for accessing values

or invoking methods in a target application, as well as expression performing type checks.

One important thing to note is that we have to be able to cope with the lazy-loading most

JVMs perform. Type checking during parsing would fail if the type of some field used in a

constraint is not yet loaded by the runtime environment. In such a case we try forcing the

type (i. e. the class) to be loaded. This may happen several times during parsing a constraint.

Loading the class may also fail, causing the entire parsing to fail. Whenever that happens we

delay the use of the constraint and retry it later, when the runtime environment has successfully

loaded the type in question.

4.2 Observing Component

The observing and wrapping component is essentially JDI (described in Section 2.2) com-

bined with some custom code. The notifications generated by JDI suit most of our needs,

although some workarounds were required since JDI does not support notifications for some

events needed. Those are mostly the creation of new objects, as well as the modification of

collection contents. One benefit of using JVMTI is that once an application has been started

with the proper launching options, a debugging application may connect to it at any time.

Another possibility is to start the target application from debugger itself, causing it to become

immediately attached to it. Although our tool is not a debugger in the strict sense, it still

uses similar concepts. From conceptual point of view, our invariant checker can be treated as

an extended debugger since we also provide options to suspend the programs executions if a

violated invariant is detected.

4.2.1 Observing the Creation of new Objects

In Java, there are generally two ways how a new object may come into existence. Memory

is allocated for it and the object is created by either invoking a constructor or by cloning an

already existing one. The JDI does not support notifications for object creations natively. We

can simply work around this issue by observing method exit events for constructor and clone

calls. At first glance this sounds easier than it actually is, we only want to create object creation

notifications when the object has been fully initialized. If we would perform invariant checks

on an object that has only been partially initialized (or not all) they would most certainly

fail. Most times there is not just one constructor involved during initializing an object, in fact
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Algorithmus 3 Generating change notifications for collection changes
Input: a collection c and a set of objects R referencing collection c

for all object ∈ R do
c← object.class

F ← c.fields

for all f ∈ F do
value← f.getV alue(object)
if value = c then

add change (MOD, object, f) to the list of recent changes
end if

end for
end for

every class in Java has at least one superclass whose constructor is also involved. We can be

positive that the initialization is completed if the next method on the method call stack is not

a constructor call on the object itself.

4.2.2 Observing Changes of Collection Contents

Collections in Java are considered as ordinary objects, not given any special treatment. Thus,

JVMTI will not create specialized notifications concerning changes to its contents. Such noti-

fications are still necessary if an operation iterating over the contents is used in a constraint.

We explored two different ways tor generating such notifications. One way of doing so is mem-

orizing all fields read during retrieving its contents. Whenever the value of one of those change,

there is a high probability but not a necessity that the actual contents changed. This approach

works with every imaginable implementation of a collection, but introduces the drawback of

requiring to observe every single one of the fields mentioned, which may be a high performance

deficit. Another possibility is to observe calls to methods such as add, remove, etc. This way

observing the accessed fields become obsolete, although we possibly miss some changes to the

contents. Consider a collection implementation which offers means to alter the contents without

calling one the standard methods, rendering our notification mechanism incapable of detecting

the change.

No matter which one we choose, there is still additional work to be done. As previously

mentioned, our approach relies on the notion of scope elements, a collection can simply be

considered being the value of a scope element (maybe more than just one). In order to generate

proper change notifications as required by our incremental detection mechanism, we still need

to find those scope elements. See Algorithm 3 for a more detailed description.

4.2.3 Accessing / Converting Values

As described in Section 2.2.3, JDI only provides Mirrors to the values in the target application,

but to perform invariant checking the concrete ones are needed. Whenever a value of a field
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is accessed during validation, it is not accessed directly via JDI. Instead it is retrieved via the

scope element representing the field. If the scope elements cache is outdated (see below) the

value is accessed via JDI and converted to a usable type.

• In case the value is of a primitive type, the conversion simply retrieves the actual primitive

value and converts it into its object representation (java.lang.Integer,

java.lang.Boolean, ...)

• If the value is a StringReference, the actual string can simply be queried from.

• If the value represents an array, the converter constructs a new instance of

java.util.ArrayList and adds the arrays contents to it. Note that the actual values of

the contents will also be converted accordingly.

• If the value represents a collection, it will be converted as described in 4.2.3.1.

• Otherwise, if the value is an ordinary ObjectReference, it is used as-is.

4.2.3.1 Querying Collection Contents

Additionally to observing content changes of collections, we also need a way to access its contents

since there are expression that iterate over the contents of collections during the validation of

invariant instances. Since collections are treated as ordinary objects and we do not know the

concrete implementation (how the contents is stored), there needs to be a generic way to access

the contents. Fortunately, every collection in Java implementing the java.util.Collection

interface implements a toArray() method. This method can be used to retrieve the contents

of a collection in the form of an array. Arrays are treated specially by JDI, a mirror to a array

reference allows iterating over the arrays contents. To use the contents of the collection we

perform the following steps:

1. Create a new collection CN in the invariant checking component itself (the type of collec-

tion depends on the type used in the target application)

2. Call the toArray() on the collection CT in the target application.

3. Iterate over the returned array

4. Convert each value as described in Section 4.2.3

5. Add converted value to CN

6. Return Cn
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4.2.3.2 Value Caching

As described in Section 2.2.3, accessing values over JDI always involves commutation overhead,

which can drastically decrease the performance during invariant checking (see Section 5.2).

Thus, we decided to let scope elements cache their current value. This can greatly increase the

performance since the scope elements value can be accessed directly. Each scope element also

contains a flag stating whether the cached value is up to date. Whenever a modification change

is received for a particular scope element the central component will reset this flag. If later on

the scope elements value is used during an invariant instances validation, it checks whether this

flag is set. If not (cache is outdated) the current value will be retrieved via JDI and properly

converted (as shown in Section 4.2.3), otherwise it may simply use the cached value.

This caching mechanism is especially crucial for scope elements representing collections,

since it requires even more effort / time to retrieve its contents. Retrieving the contents involves

invoking a method via JDI (which is even more costly than accessing a value) and converting

the values recursively (see Section 4.2.3.1).

4.2.4 Connection options

Basically, we could support all connection options available when using JDI (see Section 2.2.1).

But currently we only support two of them, the LaunchingConnector and the SocketAttaching-

Connector. Other options are not available on all operating systems or are simply not suited

for our needs, so we chose not to support them. Using these two kinds of connectors is sufficient

to provide the two basic ways of connecting to the target application, by starting it from the

invariant analyzer or by connecting to an already running one. When starting a new one, it

basically acts like starting it from a command line, all relevant starting parameters must be

supplied. This includes the class path, starting class and any other desired launching options.

Starting a new application from scratch is especially useful for testing purposes, ensuring that

no invariant violations is missed.

Connecting to an already running application mainly serves the purpose of being able to

observe long running applications, such as server software or applications with a high amount of

user interactions. Generally, such applications have higher requirements regarding response time

and as already mentioned the additional overhead required for validating the invariants may

have an high impact on it. However, whenever someone notices something going wrong or the

application shows a weird behavior, there is the possibility of connecting to it and checking the

desired invariants. One of the biggest advantages using this option is that the target application

does not need run on the same machine as the Invariant Analyzer, which is especially useful

when observing server software. Most server machines running such software do not even

have an operating system with a graphical interface making it necessary to run a debugger on

different machine. Obviously, this flexibility comes at the cost of an additional overhead due

to relying on network communication. Inter-process communication using JVM TI is already
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rather slow and exchanging data over a network makes things even worse. The connection

settings necessary for using connection are the target hosts address and the port at which the

application is listening for incoming debugging connections. There is also an additional timeout

setting causing the connection attempt to be aborted if no answer is received within a given

timeframe. If disabled (setting 0) the Invariant Analyzer waits forever for the connection to

become established.

4.2.5 Synchronization with Target Application

Since the Invariant Analyzer is completely separated from the target application, i. e. running

in different processes or even machines, it would potentially be possible to not influence the

original execution time at all. While this is not entirely true since observing the necessary events

and forwarding notifications still requires some time, the actual processing of the notification

and invariant checking itself would not influence the original program. But, this comes also

with risk of introducing race conditions and probably incorrect invariant validations. If during

validating an invariant the target application modifies required values, it may lead to a different

result. There are cases in which this behavior does not matter since using the current values may

produce a more up-to-date result. The main problem is if the modification occurs when some

parts of the invariant have already been validated, causing some parts to use the old value while

others use the new one. Because of this problem the target application has to be suspended

entirely before validating any invariant instances. This was implemented by instructing each

method exit request and breakpoint request (the ones observing object creations) to suspend it

when the event notification is forwarded. After processing the event and the required invariant

instances are validated, it will immediately get resumed unless otherwise specified by the user.

4.3 Invariant Definition Storage

As of yet, our storage for invariant definitions is just a simple text file containing all relevant

data in an XML format. It is not necessarily required to store all invariants in one file, splitting

across multiple files is supported and strongly encouraged. The graphical user interface provides

the ability to load each one separately, either replacing the already loaded definitions or simply

adding them. If during adding it is recognized that a newly added invariant is already present

(invariants are considered equivalent if their name and context are equivalent), it will be omitted.

Table 4.1 shows what data is currently stored for each invariant.

4.4 Graphical User Interface

We provide a fully functional Graphical user interface developed as an Eclipse Rich Client Plat-

form (RCP) application. Although it still lacks seamless integration into the existing platform

for Java development the existing user interface offers all required functionality for using our
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Field Type Usage

Name String a simple name used to identify instances of this invariant
Description Text free text, may be used to describe informally what the

invariant does and its purpose
Definition OCL

Expression
the formal definition of the invariant. Must be a valid
OCL expression evaluating to a boolean result

Enabled Boolean Indicates whether this invariant will be validated at all.
Setting it to false will still keep it in the set of defined
invariants although skipping during processing of
changes

Keep
Validation

Tree

Boolean Switches between default top-down and bottom-up
validation, see Section 3.4.4

Generate
Repair Tree

Boolean Ignored as of yet. Will be used in the future indicating
whether data structure repair actions shall be calculated
during validation, see Section 7.2

Table 4.1: Stored invariant information

<invariants>

<invariantDefinition definition="self.next␣&lt;&gt;␣null␣implies␣

self.next.prev␣=␣self" contextElement="list.Node" description=

"" enabled="true" keepValidationTree="false" name="

CorrectlyLinked" repairable="false"/>

<invariantDefinition definition="self.item␣&lt;&gt;␣null"

contextElement="list.Node" description="" enabled="true"

keepValidationTree="false" name=" ElementReferenced" repairable

="false"/>

...

</constraints>

Listing 4.1: Example Invariant Definition File

approach in a tool supported manner. The main parts are an for editor for defining / modifying

invariants, views reporting results and a way start a new application to be observed or connect-

ing to an already existing one. Defining invariants shall be as comfortable as possible, especially

since during writing them one may not be aware of the internal workings of the implementation.

Thus, the editor component offers all the commonly features known from existing editors for

programming languages, including syntax highlighting and code completion. Figure 4.1 shows a

screenshot of the editor during definition of the CorrectlyLinked invariant and Figure 4.2 shows

an example list for code completion, including all fields and methods of the Node class.

Apart from defining invariants, the most relevant information are their actual results after

validation. As of yet we provide three different views for navigating through the results in a tree

like structure. The different views provide starting points (top level elements) for navigating

them, being scope elements, invariant instances, or invariants themselves. Figure 4.3 shows an
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Figure 4.1: Invariant Editor

Figure 4.2: Code Completion
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Figure 4.3: Invariant View

example the invariant view. It shows invariants as top level elements, which may be expanded

to show their instances. The invariant instances again may be expanded to show the scope

elements accessed by them. Validation results are shown as green (valid) or red flags (invalid).

The rectangle around of the flags indicates that this invariant instance has been validated most

recently, due to the last set of processed changes. The list of available invariants may become

quite huge, thus the tool also offers the possibility to filter certain objects such as:

Selected invariants: only shows the selected invariants

Selected invariant instances: only shows the selected invariants instances

Selected scope elements: only shows the selected scope elements

Validated invariant instances: only shows the invariant instances affected by the last set of

changes

Violated invariants: only shows the currently violated invariants (instances)

Although the OCL parser recognizes syntactically wrong invariants (in fact does not allow

them), writing correct specifications is a rather hard task and one may get unexpected results

due to incorrectly formulated invariants. Therefore, we offer some kind of debugging for in-

variants. If a user checks the Keep Validation Tree option of an invariant, there is an option

to navigate through it, aiding in pinpointing what went wrong. The entire validation tree is

presented as tree like structure, showing the results of all (sub)expressions (see Figure 4.4).

Actually, the presented structure is truly a graph since it also shows the scope elements ac-

cessed during validation scope elements and variables may be accessed by multiple expressions.

If someone is really new to the concept of how an OCL expression (or any other language) gets
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Figure 4.4: Validation Tree Navigation
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Figure 4.5: Structure Navigator

parsed into an abstract syntax tree, we also provide such a graphical view for visualizing it after

parsing.

The lack of seamless integration with a debugger currently makes it hard to perform actual

debugging using our tool. Nevertheless we offer an option to at least navigate through the data

structures of the target application in a graphical representation (see Figure 4.5). Keep in mind

that during normal execution of a target program the values may not stay the same very long,

data structures in most applications change rapidly. One has to make sure to use the proper

suspending options before visualizing and navigating through the data, i. e. make sure that the

target application is suspended before navigating through values.

4.4.1 Setting Preferences

The InvariantAnalyzer also makes use of some global preferences that have to be properly set

by the user as shown in Figure 4.6. The invariant file is the location of the invariant definition

storage. It is used to load the invariant definitions contained in the given file during startup

of the InvariantAnalyzer such that a user does not have to load the definitions manually. In

fact it is merely a convenience option, which can be left empty. The user interface also allows

set suspend options, instructing the InvariantAnalyzer the suspend the target application of

certain criteria are met.

Additionally, dialogs are provided for setting the options necessary for using the provided

connectors (see Figure 4.7).

4.5 Core Invariant Analyzer Component

The core centralized component takes care of the interoperability of the other components, i. e.

telling them what to do. Each of the other components separately is pretty worthless without

interconnections among them, e. g. the constraint checker has no use without knowing what

to check and what to do with the results. We did not want connect the other components

directly since each one could be used in other environments as well. The main tasks of the core

component are as follows:
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Figure 4.6: InvariantAnalyzer Preferences

(a) Launching Connector Preferences (b) Socket Attaching
Connector Preferences

Figure 4.7: Connector Preferences
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• Instructing the JDI which notifications are relevant, i. e. filter the notifications forwarded

by JDI, see Section 4.5.1. This is derived from the outcome of previous invariant (espe-

cially accessed scope elements). Initially, after connecting to a target application, only

class load and object creation events for existing invariants are considered.

• Dispatching the required invariant checks to the constraint checker. The core component

analyzes incoming change notifications, determining which invariant instances may be

affected by them or if the creation of new ones is necessary. It will then instantiate invari-

ants if necessary and order the constraint checker to validate those invariant instances. It

may also delete certain invariant instances entirely if it comes to the conclusion that they

are no longer needed, i. e. the object it relates to does no longer exist. This is essentially

an implementation of the Algorithm 1, but with some optimizations.

• Updating the user interface. Strictly speaking, it will not actually update the user in-

terface directly since we follow a strict model-view-controller (MVC) principle. But,

somehow the user interface needs knowledge whether some data changed and update the

views, which the core component takes care of.

• Receiving modifications form the user interface. The interaction between the user interface

and the core component is not just in one direction. A user may of course modify specified

invariants, add new ones etc. in which case appropriate processing of these events is

required.

• Connecting to the target application. Whenever a user requests the Invariant Analyzer

to start or connect to a target application, after setting the required connection options,

the core component takes care of establishing the connection and creating initial requests

for event notifications.

• Providing an invariant “queue”. Due to the lazy loading of JVMs there may be invariants

in the invariant definition storage for a context type that does not exist yet. Although we

could force loading of the context type, it does make sense since the invariant is not yet

needed anyhow. This is the reason why we also have to observe the loading / unloading

of classes. Whenever a users adds an invariant manually or loads it from the invariant

definition storage that has a context of a not yet loaded class, it is placed in a queue.

Immediately afterward a class loading request is created for that type. When the target

application loads the class all of its invariant are dequeued and properly inserted into the

central data storage.

4.5.1 Notification Filtering

Mostly it is not necessary processing all event notifications generated during a programs exe-

cution. Usually, there will by a huge amount of classes for which there are not even invariants
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defined (system classes, third-party libraries, etc.). For those classes we do not even need re-

ceive notifications when an object of it is created since there are no invariants to instantiate.

This is also true for method exit events which we use for judging whether an object is in a

publicly visible state. Furthermore, notifications informing about field modifications which are

accessed by an invariant instance are irrelevant since they would change a result. Certainly, we

could have chosen to not care about this and process the notifications anyhow, which would not

change the results in any way but would have a great impact on overall performance. Basically,

our approach would at some recognize that the notification is irrelevant and discard at anyhow.

But the necessary computation time up to this can be spared by performing the filtering as

soon as possible.

Fortunately, the JDI follows a request driven approach, i. e. it will forward notifications for

events specifically requested beforehand. For example when creating a request for a field mod-

ification event, one has to explicitly state which field to observe. In case of a field modification

it would then forward every notification for every object that modifies the given field. This

can be restricted even more by adding additional filters, e. g. restricting the event to a specific

object or restricting to a thread in which the change occurred. For method events (entry /

exit) it provides way to restrict it to certain methods only (generally, non-public methods are

irrelevant), meaning that the late filtering is necessary in this case anyhow.

Such requests may also be removed at any time, meaning that no more notifications for this

kind of event will be forwarded.

The following list states when requests for certain events are created /deleted. Note that

no request will be created if it already exists.

Class loading Created whenever an invariant with an unloaded context is defined or loaded.

Removed immediately after the occurrence of the event since this is in fact a one time

event.

Class unloading Created whenever an invariant is added to the central data model matching

its context. Removed immediately after the occurrence of the event since this is in fact a

one time event.

Field modification Created whenever a scope elements value is accessed during an invariant

instances validation. Filtered such that only notification for field modifications of the

scope elements object are received. Removed when recognized that the scope element is

no longer referenced by any invariant instance, i. e. it does not exist any more.

Field access This kind of event is only observed during the execution of a method invoked

in the target application by an invariant validation. The requests are created prior to

invoking the method and removed immediately after it is finished.

Object creation Created whenever an invariant is added to the central data model. The is

set up such that the type of the created object must be the context of the invariant or a
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subclass thereof. It will be removed when no more invariants with the given context exist

any more.

Object deletion Created when an invariant is instantiated. Filtered such that the notification

only occurs for the object matching the invariant instances context element. Removed

immediately after processing, an object can only be deleted once.

Method exit Created after receiving a notification for a field modification. A field modifi-

cation indicates that some invariant instance might be afflicted. The central component

will traverse the method stack trace up to the first public invoked on the object of the

field modification (indicating transition into publicly visible state). Depending whether

debugging information is available it will either create a breakpoint or method request at

the end of the found method. Removed after processing the corresponding notification,

or if the relevant invariant instances validation had been triggered by another event.

4.6 Central Data Storage

The data structures outlined in Chapter 3 do not directly correspond to the data structures

used in the actual implementation. In fact the different entities have no direct connection

whatsoever. All of the concepts (invariants, their instances and scope elements) are treated

as first class citizens, rendering it unnecessary to follow many indirections to find the desired

data. The central repository ensures that the relations among them at least exist virtually

and offers operations for efficiently retrieving desired data. Currently, the central data storage

is implemented as a simple that can only have a single instance, using the singleton design

pattern [35]. All currently defined invariants, their instances, scope elements and their relations

are simply stored in memory using multiple hash tables, providing both flexibility and rapid

access. The data storage defines an interface for accessing and updating this data in a convenient

way.
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Chapter 5

Evaluation

This chapter evaluates whether we reached the goals explained in Section 1.4. Evaluating

whether we achieved goals 1a and 2 comes down to a proof of correctness, which is shown in

Section 5.1. The performance (goal 4) has been measured by providing concrete time measure-

ments, shown in Section 5.2. An evaluation of the scalability requirement (goal 5) is discussed

in Section 5.3. A brief explanation of the example applications used in the evaluation and the

list of invariants defined for each of them can be found in Appendix A.

We evaluated goal number 1b by performing manual testing and it turned that invariants

can be added / removed or even redefined without any indication of problems. Goal number

3 has only been achieved partially. We claim that the approach is generic by design due to

its architecture. Exchanging the wrapping / observing component appropriately allows to the

approach to be used for other runtime environments or programming languages. But, the

current implementation is not generic enough as of yet, since the components are too strongly

coupled. Improving the generic aspect of the implementation is one of the tasks for future work,

see Section 7.6.

5.1 Correctness

We did not actually verify the correctness of the approach by formal proving. The correctness

evaluation was made under the assumption the the constraint works correctly, i. e. that it yields

correct results when instructed to validate an invariant. This means that we checked whether

checking class invariants incrementally, which our approach does, works just as well as if it

would not have this incremental behavior. Initially, we wanted to compare our approach to

an existing one like the Java Modeling Language Run-time Assertion Compiler (JMLRAC, see

Chapter 6). But since JMLRAC only introduces local checks and therefore lacks completeness,

as we showed in Section 1.3, it was out of the question. Thus, we compared our approach with

a “brute force” approach. The brute-force approach is both quite simple and able to detect all

67



5. EVALUATION

jPacMan
ATM
GanttProject

#
In

va
ri

an
t

In
st

an
ce

s

0
50

0
10

00
15

00
20

00

Figure 5.1: Amount of Invariant Instances during Evaluation

possible violations. At the end of each public method, i. e. object is in a publicly visible state, it

will evaluate all defined invariants. Thus, it is guaranteed that it will detect all violations, but

on the other hand performs a huge amount of unnecessary checks. We verify the correctness

of our approach by comparison to the brute-force approach which is correct by definition. As

already explained, the brute-force approach triggers the validation of all invariants. Although

it is highly unlikely that our more sophisticated approach triggers the same evaluations, we

can still compare the outcome of the validations at that point. Actual results are in fact not

important, what matters is whether they changed. The brute-force approach may detect a

violation, but as long as it existed already, it is mainly irrelevant. This means that whenever

the result of an invariant validation changes in the brute-force approach, this change must also

be detected by our incremental approach.

We empirically evaluated the correctness by running the test cases that are shipped with the

source code of the ATM, jPacMan and GanttProject examples. Performing those tests we could

not discover any indication that the incremental approach behaved incorrectly. Surely, this is

not actual proof of correctness, but due to the number of tests and invariants involved, we are

positive that the correctness property holds. We also performed manual, none automated tests,

using other example applications, which also showed no sign of incorrect behavior. To give an

idea about the size of the performed tests, Figure 5.1 shows the amount invariant instances

that were created during execution of the tests for each application.

We conclude that we achieved goals 1a and 2. The user effort was minimized to defining

the invariant, never mentioning when they have to be checked. Our approach is incremental by

definition and still yields correct results compared to an exhaustive non-incremental approach.
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CPU Intel Q9550 @ 2.83Ghz
Main Memory 8 GB

OS Windows 7 Service Pack 1 64-bit
JVM Oracle HotSpot 64-bit Server VM (build 23.5-b02)

Java Version 1.7.0_09

Table 5.1: Evaluation Setup

Application Time disabled [s] Time enabled [s] Slow-down

jPacMan 0.05 348.244 6964.88
ATM 0.019 23.76 1250.526
Gantt 0.604 1465.183 2425.8

Total 0.673 1837.187 2729.847

Table 5.2: Execution Times with invariant checking disabled and enabled

5.2 Performance

The general performance can be measured by comparing a system run when the invariant

checking is disabled, to a system run that performs all required invariant checks. Obviously, in

the second case the overall execution time is longer, but the question is to what extent. Thus, we

measured execution times while both having invariant checking enabled and disabled. We used

the same examples as in Section 5.1. All time measurements were recorded while executing the

test cases on an ordinary PC. The exact configuration of this machine and the JVM used can be

found in Table 5.1. By running the test cases we found out that the performance of our tool is

in fact quite poor, i. e. running a test case took on average 2729.847 times longer when our tool

performed the invariant checks compared to running the test cases without invariant checks.

Table 5.2 shows the measured execution times of the tests, for both invariant checking enabled

and disabled, as well the factor by which the invariant checking slowed down the execution.

By inserting the invariant checks in the source code of the application we saw that this lack

of performance was not explainable by just the fact that invariant checks were performed, so

we further investigated how this happened. Ultimately, it turned out that accessing a fields

value or invoking a method in target the application during validating an invariant instance

took up most of the time. Therefore, we performed some experiments to investigate to what

degree the communication overhead introduced by JDI affected performance. Firstly, we took a

look at how much slower it is to access a fields value via JDI compared to a native field access.

Table 5.3 shows the time it took to perform various consecutive field accesses (n) in milliseconds

and the calculated factor to which accessing the fields via JDI was slower. The fields value was

a simple string in all cases. Furthermore we were interested in the overhead when invoking

methods via JDI. Table 5.4 shows the results when invoking a simple “getter” method for the

field from the previous experiment. It turns out that it does not make much of a difference

whether the fields value is accessed directly or via its getter method. What actually does make

69



5. EVALUATION

n total native total JDI mean native mean JDI slow down
1 0.00109 1.944 0.00109 1.944 1789.890

10 0.00145 2.691 0.00014 0.269 1857.083
100 0.00290 12.885 0.00003 0.129 4444.514

1000 0.01558 107.085 0.00002 0.107 6873.683
10000 0.14275 1108.898 0.00001 0.111 7768.007

100000 1.47861 8167.816 0.00001 0.082 5523.990

Table 5.3: JDI field access overhead

n total native total JDI mean native mean JDI slow down
1 0.00181 2.047 0.00181 2.047 1129.935

10 0.00217 5.108 0.00022 0.511 2349.714
100 0.00580 31.055 0.00006 0.311 5357.037

1000 0.04674 239.241 0.00005 0.239 5118.760
10000 0.36195 1690.134 0.00004 0.169 4669.485

100000 1.37317 12335.310 0.00001 0.123 8983.064

Table 5.4: JDI method call overhead

a difference is when arguments have to be passed to the method. Calling the “getter” method

of the field showed that JDI performed even slower than when the fields value was accessed or

calling the getter method, as shown in Table 5.5.

This lead us to implement the caching of scope elements values as described in Section 4.2.3.2.

Unfortunately, this did not result in the desired performance increase. Since an invariant in-

stances will only be revalidated if the value of one of the accessed fields changes, the new value

has to be queried anyhow during validation. Secondly, the caching does not affect method

calls. Method calls have to be revalidated every single time, since the result may not only

depend on the current state of an object but also on local variables and arguments passed

when invoking the method. Furthermore, we do not cache queried reflective type information,

which is involved when collecting the invariant instances for revalidation or checking whether

new invariant instances have to be instantiated. As discussed in Section 2.2.3, accessing this

reflective type information also involves communication overhead via JDI.

Ultimately, we conclude that the performance of our approach when using JDI may be good

enough for testing purposes. The longer execution time may be acceptable for the benefit of

n total native total JDI mean native mean JDI slow down
1 0.00181 9.684 0.00181 9.684 5344.147

10 0.00217 14.911 0.00022 1.491 6858.987
100 0.00543 67.377 0.00005 0.674 12396.840

1000 0.03841 520.633 0.00004 0.521 13556.375
10000 0.40905 3943.608 0.00004 0.394 9640.801

100000 1.57752 33361.399 0.00002 0.334 21148.004

Table 5.5: JDI method call with argument overhead
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ensuring that all invariant violations are detected. On the other hand it is not acceptable

for monitoring productive environments. The performance may decrease to a degree that the

system becomes virtually unusable or violates performance requirements. This means that we

failed to achieve goal number 3. It has been decided that solving the performance issue requires

too much effort to get solved as part of this thesis and should be worked on in the future as

discussed in Section 7.1.

5.3 Scalability

The scalability of our approach is independent of the size or complexity of the target system.

What is really important regarding execution time is, how many change events occur during

a certain time frame and how many invariants are affected by those changes. Traditional

approaches tend to check the invariants for a certain object after exiting a public method. We

show that compared to such an approach our incremental one scales better. Because of the

poor performance of JDI, we do not compare execution times directly, using for example the

JMLRAC would always be faster since it does not rely on JDI and performs native field accesses

and method calls. Instead we just count the number of invariant instance validations that would

be triggered using the traditional approach as well as our incremental one.

In this case we do not use the same applications and their test cases as in the previous section.

The provided test cases are deterministic, meaning that there would no way to influence the

problem size when using those. Instead we used our linked list example and its invariants. The

test constructs a list containing n elements or nodes. After the list is initialized it randomly

calls m methods on each of the n nodes. Ultimately, after initialization of the list structure

n · m methods are called. Those methods may or may not impose side effects, i. e. change

the state of a node (on average one third of the method calls caused side effects). Since the

traditional approach always triggers invariant validation after exiting a public method, the

amount of validation remains constant for each combination of n and m in this case. In the

incremental case, the amount of validations per invariant instances varies, depending on how

many method imposed side effects. Since methods are picked randomly, we ran the experiment

five times for each combination of n and m. The results are shown in Table 5.6, depicting the

number of invariant instance validations for both the incremental and traditional approach. In

case of the incremental one, we picked the median value. We can see that in the incremental

case the number of validation does not grow nearly as fast with increasing values of n and m

as in the traditional one.

Using these values we can calculate the speedUp the incremental approach achieved com-

pared to the traditional one. Figure 5.2 shows a boxplot of the speedUp for every run. The

interesting result is that for low m the speedUp is almost negligible, since most of the valida-

tions are performed during initializing the list. The speedUp increases with higher m, while

it remains almost constant for constant m, and higher n. We conclude that goal number 5
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n m traditional incremental
1 1 33 17
1 10 51 20
1 100 231 59

10 1 258 100
10 10 438 130
10 100 2238 400

100 1 2508 943
100 10 4308 1225
100 100 22308 3895

Table 5.6: Number of invariant validations
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Figure 5.2: SpeedUps of incremental approach
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has been achieved by showing that the amount of performed invariant checks has been reduced

drastically compared to a traditional approach. Furthermore our approach is mostly indepen-

dent regarding the amount of existing objects (amount of performed invariant checks grows

less than linear with the amount of objects), meaning that it also scales up to bigger runtime

structures.

5.4 Complexity

We can infer the complexity of our approach mainly by analyzing Algorithm 1. The algorithm

consists of two major parts, finding out which invariant instances must be revalidated and

afterward actually validating them. The time required to lookup the required invariant instances

depends on two factors, the incoming change set as well as the time necessary to perform a

single lookup.

CS . . . set of changes

Tlookup (CS) = O (|CS| · tlookup)

Algorithm 1 suggests that tlookup also depends on the set of currently existing invariant

instances (for modification and deletion changes) or the set of defined invariants (for creation

changes). But, the actual lookup is implemented by using hashtable lookups, which can be

performed in constant time (O (1)). Thus, Tlookup only depends on the set of changes, or more

specifically the number of elements inside the change set.

Tlookup (CS) = O (|CS|)

The time required to validate the invariant instances depends on the size of the set of

invariant instances to validate as well as the time necessary to perform the actual validation of

an invariant instance.

IIe . . . set of invariant instances to validate

teval . . . time validate an invariant instance

Teval (IIe) = O (|IIe| · teval)

How long a single validation takes depends on the definition of each respective invariant

and generally grows with the number of expressions it contains. But, the number This means

that teval is not constant, but actually a function depending on the number of expressions.

Validating an expression requires a constant amount of time (texp), thus teval can be defined

as:
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texp . . . time to validate an expression

e . . . number of validated expressions

teval (e) = texp · e

If an invariant does not iterate over a collection, e is constant and therefore teval can be

neglected regarding asymptotic complexity. Otherwise, it depends on the number of elements

iterated over, i. e. the e grows linear with the number of elements iterated over. In the worst

case in invariant validation may iterate over all objects existing in memory, although it is highly

unlikely. Empirical evaluation showed that the validation time of most invariants is mostly

independent of the number of existing objects. For invariants not showing this behavior, i. e.

iterating over a steadily increasing number of elemens, using the bottom-up validation mode

described in Section 3.4.4.2 it becomes independent of the number of elements. For those

reasons we treat teval as being constant for a specific invariant. Thus:

Teval (IIe) = O (|IIe|)

The set IIe depends on the set of changes, or more specifically how many invariant instances

are affected by a given change. It will increase with the number of invariants, the more invariants

exist, the more likely it is that an invariant instance is affected by a change since more fields

will be accessed if more invariants are defined. Additionally, the factor p describes how likely it

is that an invariant is affected by the change of a fields value. It depends on the execution flow

of the system and can be determined empirically for a specific system run. Usually p is low

since a lot of changes will not affect any invariant since will access the changed field, especially

if the value belongs to a system library or other reliable third-party libraries (0 < p≪ 1) Thus:

I . . . set of invariants

|IIe| = |I| · p · |CS|

Teval (CS, I) = O (|I| · p · |CS|)

The total overall complexity of the algorithm is thus:

Ttotal (CS, I) = Tlookup (CS) + Teval (CS, I) = O (|CS|) + O (|I| · p · |CS|)

But, this is only the complexity for performing the algorithm once. During an entire system

run, it will be triggered m times depending on how often the context element of an invariant

instance transitions into a publicly visible state. We call the time between triggering validation

an execution increment. Since the number of changes during each execution increment is not
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constant and depends on the execution flow of the system, we introduce a factor η, representig

the average amount of changes per execution increment. The overall complexity of the algorithm

can be given as:

Toverall (m, η, I) = m · (Tlookup(η) + Teval (η, I)) = O (m · (η + |I| · p · η))

We can conclude that the main driving factor in terms of computational complexity is the

overall number of changes during a system run, as well as execution time of the system. The

longer the system is executed the higher the number of execution increments m will get. In

most cases the set of defined invariants will not change during the execution and could also be

treated as constant.

5.5 Threats to Validity

We see the biggest threat to the validity of the evaluation in the chosen example applications.

One might argue that the applications used are too small and not representative enough since

they are not “real” systems. We used the applications because it is hard to find bigger open

source applications including predefined class invariants and we had no access to formally

defined invariants of proprietary systems. On the other hand the used examples from different

domains and we find that they are big enough. Furthermore the invariants could be more

diverse / complex. This is why in case of the GanttProject application we introduced some

invariants that do not exactly check meaningful properties, but instead exist for the sole purpose

of having some more complex invariants. Regarding the scalability evaluation, one might argue

that we purposely implemented the example and the performed test such that it clearly favors

our approach. As a matter of fact, we could have constructed the test such that the achieved

speedUp would be negligible by only invoking methods that cause side effects. But, this is not

the case in real systems either. Usually, a fair amount of methods of a class do not modify

the state in any way. There are even systems that only use immutable objects, i. e. objects

whose state can never change. Our approach would only check the invariants for such an object

exactly once, after initialization. All further method calls on the object can solely query its

state and do not modify it.
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Chapter 6

Related Work

There are many approaches dealing with verifying correct system behavior. In general a piece

of software can either be verified statically by means of formal proving or dynamically during

runtime. Over the years several specification languages have been developed. Although the

programming language Eiffel had several flaws in its design [6], it was the first major language

which explicitly contained the notion of preconditions, postconditions and invariants in its

specification [23]. Later languages do not support those concepts directly, but efforts are being

made to enrich existing languages by creating new specification languages and embed them

into the original one, e. g. the Java Modeling Language (JML) [20]. Unfortunately, those

languages tend to be incomplete, meaning that programming language develops faster than the

specification. At least in case of the JML the tool support is rather poor, possibly caused by the

fact that the group(s) developing JML and its tools is / are different from the one developing

Java. Stable versions of the tool-chain do not support newer features of Java and tools that

do support those are rather unstable and sometimes lack further development. The .NET

programming language family does not support design by contract natively either, but efforts

are being made to integrate it by providing a so called code contracts library [26, 12]. This

project is possibly more promising since it is developed and supported by Microsoft themselves.

Languages like the Object Constraint Language (OCL [28]) aim at providing functionality to

specify behavioral or structural aspects during design time. Usually all those languages are as

powerful as first order logic.

6.1 Static checking

The concept of statically checking or proving the correctness of a program was introduced

by Hoare in the late 1960s [16] and refined by Dijkstra [7, 8]. Using these techniques one

can actually mathematically proof that an algorithm works correctly. Simply put, it has to

be proven that taking the precondition of a function, after the execution of the function its
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postcondition holds. In this manner we could show that the setPrev method in our illustration

is incorrect, since the proof fails. The proof for the method setNext indeed succeeds, although

we can construct an invalid linked list using this method as well. But as mentioned before, this is

caused by the fact that the invariant is incomplete. If we would use the complete definition, i. e.

checking both directions, it would in fact turn out that both methods are incorrect. However,

as the name suggests static verification is only useful if the entire system (especially function

calling relationships) are known prior to execution. As systems grow in size and complexity

or even exchange components during runtime and change their behavior, formal proving is

rendered impossible.

Another problem that remains is that formally proving a program requires manual effort.

Theoretically, not even any tool is required, just pen and paper would suffice. But, since

proving even a slightly bigger program increases the needed effort drastically, tool support is of

the essence. Tools like the KeY environment [1] drastically reduce the required manual effort,

but can never eliminate it entirely. This is caused by the fact that the satisfiability problem

for certain groups of first order language is generally undecidable [15]. Although the most

common groups used for defining class invariants are actually decidable, proving them is still

an NP-complete problem [5]. Thus, proving the correctness of some constraints may either run

indefinitely or would require way too much time without human guidance.

There are also tools available that do not require manual effort, but do not actually verify

the correctness of a program. One example would be the Extended Static Checker for Java

(ESC/Java [13]) which can be used to find errors in Java programs annotated with constraints

written in the Java Modeling Language (JML). Unfortunately, it is neither sound nor com-

plete [19], although efforts are made to complete its completeness [17]. It is not sound in a way

that is produces false positives, i. e. when it states that a function is correct it actually means

that it could not find an error, not that there is none. This behavior is caused by the presence

of loops. To formally prove loops, loop invariants are required, which can be defined using JML

but are ignored as far as ESC is concerned. What ESC actually does, is that it performs loop

unrolling by performing the loop n number of times (customizable). Obviously, the higher n is,

the higher the chance that it will find an incorrectness but does not guarantee that there is no

error if none is found. Incompleteness relates to the fact that it does not support all language

features of Java and JML. The code contracts project for the .NET family also provides a tool

for static checking called cccheck [11]. This tool is more sophisticated in that it takes loop

invariants into account and furthermore, tries to infer a minimal one from the postcondition if

none is present.

Yet another means to verify correct system behavior statically are model checkers [4], mostly

useful to verify the correct interactions of a multi-threaded system. Simply put, one has to come

up with a formal model of the system and properties it has to fulfill, written in some sort of

temporal logic. A model checker can then more or less simulate the systems behavior and

verify whether the properties hold or not. One of the major challenges using a model checker
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is ensuring that the formal model actually models the “real” system. Again, a software system

evolves over time and the model may become inconsistent regarding the system, if not properly

maintained. Fortunately, a lot of research effort is into coming up with transformers capable of

inferring a formal model from a programs source code.

6.2 Dynamic checking

The drawbacks of statically checking the correctness of a program can be avoided by doing it

dynamically at runtime. Although it eliminates those drawbacks, it has others. Most notably

the common known fact that dynamic checking can never verify the correctness of a program.

It is thus a simple means of testing, i. e. finding errors during the execution of the program.

Furthermore, executing the checks at runtime takes up computation time and thus may be

unsuited in a productive environment. Although our own approach has the same problems as

well, it aims at drastically reducing the necessary execution time.

The goal of most existing approaches is to generate new code for existing classes, which

then contains the required checks (either directly in the compiled code or by generating new

source code). This is exactly the behavior introduced in Eiffel. While this works perfectly

fine for method pre- and postconditions, it only approached invariant checking by introducing

local checks, i. e. adding the invariant to the precondition and postcondition of every (public)

method defined in the respective class. We already showed in Section 1.3 that by doing so

too many invariant checks may be performed as well as missing some invariant violations. The

list of approaches with such a behavior would be quite huge. Usually, they either weave the

required checks into the existing classes, e. g. the runtime assertion compiler for the JML [3].

Other approaches aim at not modifying the original code and instead generating new classes

that perform the invariant checks by making use of common design patterns for object oriented

software [22]. Leaving the original code untouched makes it easier to enable and disable the

checks during runtime in a productive environment. The approach which comes close to our

own from an architectural point of view [27], also entirely uncouples the component performing

the checks from the target application, making it even easier to run the original application

without checks being performed.

All related approaches we came across still have the issue of being to exhaustive, i. e. per-

forming too many checks when it comes to invariants, whereas our approach is fully incremental

and avoids most unnecessary checks. At least the JML has a mechanism to inform the run-

time assertion compiler that a method is a side-effect, and thus no invariant checks need to be

performed as part of their postconditions. The behavior that they will not recognize certain in-

variant violations can be partially ignored, provided they will detect a violation if the invariants

are complete. Our approach on the other hand is in some cases still able to detect violations

even though the invariant definitions are incomplete. Furthermore, it detects violations caused

by objects others would not. It comes down to whether one just wants to only detect errors
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during program execution or be provided with more complete information, which may be useful

during debugging.
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Conclusion and Future Work

This master thesis introduced a novel approach for incremental class invariant checking. We

evaluated our implementation showing that it does in fact work correctly and theoretically

scales up to bigger systems. By using OCL as the constraint language for defining invariants,

we bridge the gap between design and implementation, as well as provide an implementation

language independent way of formulating them. The invariant definitions are entirely decoupled

from the implementations source, providing superior flexibility for users. The ability to add

and remove invariants during runtime, or even modify, allows to only check currently relevant

ones or adept them as needed. But, there are still things that need to be addressed in order

to be useful in a productive software development environment. Most of all, all the identified

performance issues have to be addressed as well as properly integrating the implementation

in an integrated development environment. Additionally, from a conceptual point of view our

overall vision has not been achieved yet. This work is simply the first step in this direction by

providing a basis future features can benefit from. In particular we want our approach to be

able to aid user in fixing errors in software systems as well as using all concepts of design by

contract. In the following sections we discuss the further steps that need to be addressed to

reach the final goal.

7.1 Increasing Performance

We showed that as of yet the performance of our tool is rather poor. But, it has be noted

that this is not caused by our implementation itself, rather than by the use of JDI and its

inter-process communication. While on one hand performing the invariant checks in a separate

process provides more flexibility, it also causes additional overhead. Reasons are mainly the need

for socket communication between the processes and necessary synchronization. Every single

time some data is queried from the virtual machine the target application is running in, this

overhead becomes relevant. This does not apply for accessing field values or invoking methods
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during the invariant checks, but also whenever accessing reflective type or similar information

which happens quite frequently. One way to avoid those problems would be to let both tasks run

in a single process, which raises the question how the necessary event notifications are gathered

in this scenario. We are currently working on a way to weave additional code into existing

classes notifying our invariant analyzer whenever events such as a field modification, method

exit, etc. occurs. Generally, this could theoretically be done by modifying either the source

code or the compiled byte code. But, since the source code may not be available (imagine an

application using third-party components / libraries), only modifying the resulting byte code

directly is left as a solution. Although running the invariant checks in the same process will

definitely slow down the execution speed of the target application, we are positive that it will

increase the overall performance. We still need to gather evidence to prove this claim, but

the fact that we already freeze the target application during invariant checks to ensure correct

results makes it pretty much obvious.

7.2 Fixing Errors

Although our proposed approach works quite well regarding the detection of invariant violations,

the goal is not just detecting the existence of errors but, ultimately correcting them. We want

to provide additional support helping a developer to fix the errors existing in the system. Fixing

the errors in the source code immediately is not always possible, especially if these errors are

found during the execution of a productive system. Due to economic or organizational reasons

it may not be desired to shut down an entire system, fix the error, redeploy it, and restart

the whole thing. But, a system that is in an invalid state may cause huge financial loss, or

even human casualties. Therefore, as a first step, we want to provide means to “hotfix” the

data structures used by the system and thus transition it back into a safe state. The proposed

fixes will be quite similar to the ones shown in [37], although in case of a running system,

user interaction will mostly be neither desirable nor feasible. Some sort of automated fixing is

required in this case. If there is only one possible fixing action, then there is no arguing about

which one to apply and fixing the error automatically is easy. Unfortunately, this case occurs

quite seldom. Optimally, we will provide the opportunity to not only define the invariants

themselves, but also how a possible violation should be resolved. Another option would be to

use some kind of a supervised machine learning approach, i. e. let a user choose which action

to take a finite number of times and use this information to automatically apply those actions

for similar violations in the future.

Fixing the data structures in the running system is not even half of the story. While it

is fine as an intermediate solution, it will not prevent the error from occurring over and over

again. Eventually, the error needs to be fixed in the application’s source code. We find the error

reports generated by most existing approaches insufficient to actually aid a developer in fixing

the flawed code. Mostly, they merely provide a method call stack that leads to the erroneous
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method causing an invariant’s violation. We are confident that the additional data we collect

during an invariant’s validation is useful for debugging purposes. Our approach does not only

collect the method calls involved in the violation, but also all the scope elements (including

their values), as well as the changes causing the defect. Furthermore, the proposed actions for

fixing the defected data structures, can also be used for debugging purposes, as shown in [21].

The ultimate vision, which may be utopia, is that we end up with an approach capable of

automatically fixing a target application to a certain extent, stopping the invariant violations

from occurring. State-of-the-art runtime environments are capable of “hot-swapping” the code

of methods even during runtime. Using this possibility it is even feasible to fix the errors in a

productive system without the need shut it down ever. Obviously the changes performed on

the code during runtime need to be written back to the source code eventually.

7.3 Supporting Additional Design by Contract Paradigms

Previously, we stated that checking paradigms such as pre- and postconditions (method con-

tracts) does not require an approach such as ours that performs monitoring a global scale since

it is safe to check them locally at the beginning and end of a method respectively. But, form

a development / testing process point of view it not desirable to check those using different

approaches / tools. Eventually our tool should include capabilities for checking all kinds of

constraints, not only class invariants, including loop invariants. While it indeed suffices to

check method contracts locally, they still share some of the issues we identified regarding class

invariants, especially the room for human errors. An invariant definition may become invalid

or irrelevant due to software evolution, which is also true for other types of constraints. Fur-

thermore a class invariant defined in a superclass must also be maintained by its subclasses,

which also applies to postconditions of overridden methods. For preconditions this is the other

way around to some degree. One may choose that a method shall maintain the precondition

of the overridden one, but need not necessarily be the case. Confusing this behavior is another

error source avoidable by using an automated approach.

Loop invariants are quite closely to class invariants in that they need to be maintained

over a longer time period. Basically, they have to hold when entering a loop and after each

loop iteration. Although we could use our existing functionality to support loop invariants, i. e.

by only enabling during the execution of a loop, we are not quite sure how to implement it

properly. Our approach makes it unnecessary to know any implementation details and there is

simply no way to pinpoint the exact location of the beginning / end of loop without knowing

those details. For starters, additionally to the events we already gather, we would need events

notifying us about entering a loop and end of an iteration. This is hard to achieve because

there are no special statements in Java byte code making these kind of events explicit. Another

issue would be how define the context of a loop invariant. One would not be able to state that

an invariant must hold during the execution of a specific loop inside a method without doing

83



7. CONCLUSION AND FUTURE WORK

it in the actual source code, simply because loops are not named constructs in Java.

7.4 Invariant Checking Triggering Options

Traditionally class invariants have to hold whenever an object is in publicly visible state. But,

for some reason, one may want to make this condition more strict, or relax a bit. For example,

consider an invariant that should prevent a field from overflows. For such a constraint it

makes sense to ensure that it holds at any time during execution, since an algorithm using

its value will most certainly fail. This does not mean that the invariant becomes part of the

methods precondition, which has to be the case anyways, but that it also has to hold during

the execution of the method itself. It may also be the other way around, i. e. deferring the

invariant check and making its validation depending on some other condition. In our obviously

flawed linked list implementation the CorrectlyLinked invariant will be checked after each call

of the setNext(...) or setPrev(...) method. Since the fields are not accessible directly

form within the List class, there is no possible way that allows for intermediate incorrect states.

Usually, the List class would provide methods like add(...) or remove(...) to modify its

contents. If it has to only rely on the setNext(...) and setPrev(...) for doing so, there

is no way to insert or remove an element from the list without violating the CorrectlyLinked

invariant at some point. This problem can be avoided by allowing to specify an alternative

condition for triggering the invariant check. In this case it would suffice to state it should be

triggered whenever the list object containing the node transitions into a publicly visible state,

or one could be more specific define a set of methods that trigger the validation.

Essentially, we want to provide as much freedom as possible regarding triggering conditions,

without making it overly complex. While on one hand this option provides more freedom it

necessarily also increases the manual effort. We still have to figure out what sort conditions

actually make sense, there may be certain conditions that in combination contradict each other.

Our approach needs at least a way to detect invalid conditions and desirably provide some

guidance for the user.

7.5 Seamless Integration with IDE

Although currently our tool works good enough for a prototypical implementation, it is remotely

from being fit for usage in active development. For our tool to actually be useful during

development / testing it needs to be seamlessly integrated within an Integrated Development

Environment. It is already built upon the Eclipse Platform, so to fully integrate it with its Java

Development Tools, especially the debugger, is a logical step. The Eclipse Platform supports

the notion of so called Run Configuration. We should make use of this and provide our type

of configuration by probably extending the default debugging configuration and the built-in

debugger. Doing so would make it much easier to launch a program for testing purposes using
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our InvariantAnalyzer and being able to pinpoint to locations in the source code. Extending

the debugger would also provide easy access to the functionality of stepping in the programs

executions once a violations is detected, enhancing the chance of finding the error that caused

the violation in the source code.

Furthermore, currently it is necessary to provide specific class path information to define

invariants prior to runtime. Doing this during development is redundant, since it is already

configured in the launched Eclipse project(s).

7.6 Refactoring Implementation

Although the approach is generic in a sense that it can be applied to arbitrary object oriented

languages, the implementation does not. Currently, it is merely a prototype and its components

are too strongly coupled to allow easily exchanging them. Quite some refactoring is required

in order to come up with an implementation that allows easy adaptation. Therefore it is nec-

essary to introduce structures representing concepts shared by most object oriented languages.

Invariant checking should then solely work on those structures. An additional layer on top of

the wrapping / observing component will then be used to map the language specific concepts

to generic ones and vice versa.
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Appendix A

Evaluation Tools / Applications

A.1 ATM

This is a simple example that simulates an Automated Taller Machine (ATM) and is one of the

examples used in the official book for the KeY software verification tool [1] and can be down-

loaded from http://www.key-project.org/thebook/examples/10UsingKeY/Bank-JML/. The

invariants used were defined in the source code as annotations and written in JML, which

we translated to OCL. Listing A.1 summarizes all invariants used. Since this application is

only used in the book as an example how to formally specify an application and verify its cor-

rectness, no user interface is provided. Neither does is come with proper unit tests, but there

is a test case simulating sessions at an ATM (insert bank card, enter PIN, . . . ). This test case

has been used for the correctness and performance evaluation.

context bank:: OfflineAccountProxy

inv: offlineBalance >=0 and offlineBalance <= 1000

context bank:: CentralHost

inv: accounts ->size() = maxAccountNumber

inv: accounts <> null

inv: Sequence{1 .. self.maxAccountNumber}->forAll(i | let

account : bank:: PermanentAccount = self.accounts ->at(i) in

account <> null implies account.accountNumber = (i - 1))

context bank::Clock

inv: clockInstance <> null

context bank::ATM

inv: Sequence{1 .. self.maxAccountNumber}->forAll(i | let proxy
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: bank:: OfflineAccountProxy = self.accountProxies ->at(i) in

proxy <> null implies proxy.accountNumber = i - 1)

inv: accountProxies <> null

inv: accountProxies ->size() = maxAccountNumber

inv: ( online and insertedCard <> null ) implies centralHost.

accounts ->at(insertedCard.accountNumber) <> null

inv: centralHost <> null

inv: insertedCard <> null implies

insertedCard.accountNumber < maxAccountNumber

inv: insertedCard <> null implies

insertedCard.accountNumber >= 0

inv: insertedCard <> null implies not(insertedCard._invalid)

inv: customerAuthenticated implies insertedCard <> null

context bank:: Withdrawal

inv: amount > 0

context bank:: Account

inv: transactions <> null

context bank:: PermanentAccount

inv: amountForLatestWithdrawalDay >= 0

Listing A.1: ATM Invariants

A.2 jPacMan

This application is a simple implementation of the popular Pac-Man game originally developed

by Namco in Java. It is just a student project, but nevertheless fully functional and can be

downloaded from https://code.google.com/p/in3205/. All invariants are implemented directly

in Java as separate methods and checked by using assertions, similar to the example Node

implementation show in Listing 1.1, Section 1.3. We translated them to OCL and removed the

checks in the source code to avoid double checking them. The invariants used are shown in

Listing A.2. Although the application comes with a fully functional user interface for playing

the game we did not use it for the evaluation. Instead we ran the provided unit tests for the

classes defining the applications data model.

context jpacman::model ::Board

inv: height >= 0 and width >= 0
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context jpacman::model::Guest

inv: location <> null implies self = location.inhabitant

context jpacman::model:: PlayerMove

inv: foodEaten >= 0 and thePlayer <> null and self.mover =

thePlayer

context jpacman::model::Game

inv: not(playerDied() and playerWon()) and thePlayer.pointsEaten

<= totalPoints

inv: theBoard <> null and thePlayer <> null and theStack <> null

and monsters <> null and totalPoints >= 0

context jpacman::model:: MonsterMove

inv: theMonster <> null and self.mover = theMonster

context jpacman::model::Player

inv: pointsEaten >= 0

context jpacman::model::Food

inv: points >= 0

context jpacman::model::Cell

inv: self.inhabitant <> null implies self = self.inhabitant.

location

inv: board <> null and board.withinBorders(x, y)

context jpacman::model::Move

inv: self.mover <> null and mover.location <> null and (self.

initialized implies not(self.movePossible() and self.

playerDies))

Listing A.2: jPacMan Invariants

A.3 GanttProject

GanttProject is an open source project management tool, available at http://www.ganttproject.biz/.

Its main purpose is to define so called Gantt charts, originally developed by Henry Gantt [14].

Gantt charts are used to outline a projects schedule. The project is broken down into tasks,
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Figure A.1: GanttProject Screenshot

each having a start date and an end date. Those tasks can be hierarchically structured and

dependencies defined among them, e. g. a task can only be started if its predecessor is finished.

By assigning the completion percentage of the tasks, one can monitor the projects progress.

Figure A.1 shows a screenshot of GanttProject while creating a Gantt chart 1. Additionally,

users can define human resources and assign them to tasks.

Unfortunately, GanttProject does not come with any predefined invariants. Thus, we wrote

some ourselves by examining test cases or data structures to infer class invariants. Some of the

invariants do not actually define property that usually have to hold and were added just for

testing purposes. Ultimately, we came up with the invariants shown in Listing A.3.

context net:: sourceforge:: ganttproject::task:: dependency::

TaskDependencyImpl

inv: self.myDependant.getEnd ().compareTo(self.myDependee.

getStart()) <= 0

context net:: sourceforge:: ganttproject:: GanttTask

1Screenshot taken from http://en.wikipedia.org/wiki/GanttProject
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inv: self.isMilestone <> self.myAssignments.myAssignments.values

()->exists(oclAsType(net:: sourceforge:: ganttproject::task::

ResourceAssignment).getLoad().round() > 0)

inv: self.getDependenciesAsDependee ().toArray()->forAll(d | d.

getDependant().getStart().compareTo(self.myStart) <= 0)

inv: self.myStart <> null implies self.myStart.compareTo(self.

myEnd) <= 0

inv: self.isMilestone implies self.myLength.getLength() = 0

inv: self.getNestedTasks()->isEmpty()

context net:: sourceforge:: ganttproject::resource:: HumanResource

inv: self.myLoadDistribution.myLoads ->forAll(oclAsType(net::

sourceforge::ganttproject::resource:: LoadDistribution::Load).

load.round() <= 100)

inv: self.myLoadDistribution.myTasksLoads ->forAll(l | let load :

Integer = l.oclAsType(net:: sourceforge:: ganttproject::

resource:: LoadDistribution::Load).load.round() in load <> -1

implies load = 100)

Listing A.3: GanttProject Invariants
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Glossary

IDE Integrated Development Environment

JDI Java Debug Interface

JDWP Java Debug Wire Protocol

JML Java Modeling Language

JPDA Java Platform Debugger Architecture

JVM Java Virtual Machine

JVM TI Java Virtual Machine Tool Interface

MOF Meta Object Facility

MVC Model-View-Controller

OCL Object Constraint Language

RCP Rich Client Platform

UML Unified Modeling Language
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